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Taxonomy

of Model Reuse

{

Semantic/rule-based
methods

}

—( Model Selection )—

Metric-based
methods

—( For small models: Taskonomy [Zamir et al., 2018], Semantic Specification [Zhou and Tan, 2024]

For large models: HuggingGPT [Shen et al., 2024], VisProg [Gupta and Kembhavi, 2023]

For small models: GBC [Pandy et al., 2022], NCE [Tran et al., 2019],
LEEP [Nguyen er al., 2020], Deep Attribution [Song ef al., 2019]

Learning-based
methods

Adapt PTMs for
target data preparation

e i i

For large models: LOVM [Zohar er al., 2023], SWAB [Yi er al., 2024]

For small models: Task2Vec [Achille e al., 2019], MRE [Ding et al., 2022],
Model Spider [Zhang er al., 2023]

For large models: Mixture of Experts [Jacobs er al., 19911, Model-SAT [Zhang er al., 2025],
Zooter [Lu et al., 2024], Routoo [Mohammadshahi et al., 2024],

For small models: HMR [Wu er al., 2019], C-LoRA [Smith er al., 2023]
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—(Model Adaptation )—

Adapt PTMs for
target model training

Adapt PTMs for
target model inference

=
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For large models: VCD [Menon and Vondrick, 2023], CuPL [Pratt er al., 2023]
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Knowledge Transfer [Hinton et al., 2015], Twice Learning [Zhou and Jiang, 20041,
FitNets [Romero et al., 2015], RKD [Park et al., 2019]

For small models: £5 [Li er al., 2018], SN-GANs [Miyato er al., 2018], REFORM [Ye er al., 20211,

, LoRA [Hu er al., 2022],
al 20231, BLIP-2 [Li et al., 2023]

__ Scope of this talk

FisherMerging [Matena and Raffel, 2022], WiSE-FT [Wortsman e al., 2022],
OTFusion [Singh and Jaggi, 2020]

(" For small models: NCM [Mensink et al., 2013], Head2Toe [Evci ef al., 2022],VQT [Tu et al., 2023], )

For large models: RAG [Lewis et al., 20201, CoT [Brown et al., 2020]

)

Model Assembly [Yang et al., 2022], Model Representation Learning [Schiirholt ez al., 2022], Model Editing [Mitchell er al., 2022],
Model Repair [Luo ef al., 2023] Model Relationship Discovery [Yu and Wang, 2024], Managing LLMs [Shen ez al., 2024]
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methods
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Knowledge Transfer [Hinton er al., 2015], Twice Learning [Zhou and Jiang, 2004],
FitNets [Romero er al., 2015], RKD [Park er al., 2019]
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For large models: MiniLLM [Gu er al., 2024], LoRA [Hu er al., 2022],
Model Reprogramming [Chen, 2024], LLaVA [Liu er al., 2023], BLIP-2 [Li et al., 2023]

Adapt PTMs for
target model inference

(" For small models: NCM [Mensink er al., 2013], Head2Toe [Evci et al., 2022],VQT [Tu e al., 2023], )

FisherMerging [Matena and Raffel, 2022], WiSE-FT [Wortsman e al., 2022],
OTFusion [Singh and Jaggi, 2020]
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For large models: RAG [Lewis et al., 20201, CoT [Brown et al., 2020]

)

Model Assembly [Yang er al., 2022], Model Representation Learning [Schiirholt er al., 2022], Model Editing [Mitchell er al., 2022],
Model Repair [Luo et al., 2023] Model Relationship Discovery [Yu and Wang, 2024] Managing LLMs [Shen er al., 2024]
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Adapt PTMs for target data preparation

= PTMs serve as experts capable of generating enriched data for the target task, or
filtering noisy data for the target task, enabling the target model to achieve better
generalization ability.

Filter the existing training set. Generate related data.




PTM for Data Denoise

= PTM can rectify the noisy instances x; or labels y; in T, based on which we
make the target model be trained on a denoised dataset.

Mix pseudo label from PTM and the true label [Cheng et al., EMNLP'23].
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https://aclanthology.org/2023.findings-emnlp.209.pdf
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PTM for Data Selection

* PTM can selects the important examples (x;, y;), by prioritize the learning on
them, the negative etfect of noisy data is mitigated.

Utilize pre-trained model to weigh different PTM utilizes various criteria (e.g., the
instances in curriculum learning for a faster prediction uncertainty of the PTM) to set the
convergence rate_[Zhao et al., AAAT'20]. weight of the target examples [Zhang et al,

ECCV’20][Liu et al., AAAI'23].
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PTM for Richer Labels

= PTM provides better supervision via modified labels. By learning on the enricher
supervision, the target model generalizes better.

PTM can provide supervision (pseudo PTM can help obtain pseudo labels, or even the
labels) for unlabeled data [Yen et al., CoRR]. distribution of labels [Geng, TKDE’16][Gao et al., TIP’17].
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PTM for Data Augmentation

= PTM saves the (sufficient) statistics of the pre-trained data, which is able to generate
synthetic data in the reuse phase.

Set PTM as the Reduced Kernel Mean Utilize PTM to synthesize examples with
Embedding (RKME) [Wu et al., TKDE'21]. Gaussian augmentation [Yang, Liu, Xu, ICLR'21].
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PTM for Data Augmentation

= PTM saves the (sufficient) statistics of the pre-trained data, which is able to generate

synthetic data in the reuse phase.

Arctic fox

mean sim var sim
white wolf| 97% 97%
malamute 85% 78%
lion 81% 70%
meerkat T8% 70%
jellyfish 46% 26%
orange 40% 19%
beer bottle 34% 11%

Similar classes share similar

statistical information
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Calibrate and generate samples for few-shot classes




PTM for Data Augmentation

= PTM saves the (sufficient) statistics of the pre-trained data, which is able to generate

synthetic data in the reuse phase.

= Utilizing GAN/Stable Diffusion to serve as data generator to generate source instances.

Generating Before Task
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[Shin et al., NIPS"17] [Gao et al., ICML'23] [Wu et al., CVPR’25]

There exists a gap between the target data and generated data, which should be carefully considered in model reuse.
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PTM for Expert Knowledge

= Utilizing PTM to obtain auxiliary meta-data (a.k.a. privileged information) [Vapnik, Vashist,
NN’09] [Vapnik, Izmailov, [IMLR’15].

= Take advantage of ChatGPT to provides expert knowledge, e.g. utilizing ChatGPT to
automatically generate descriptors given class names. Then perform image recognition
by comparing to the category descriptors based on CLIP [Menon et al., ICLR"23].

O beach o tiger”
syrlnge We can obtain multiple zero-shot
classifiers based on the generated
texts, which helps the final prediction.
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PTM for Expert Knowledge

= Uses GPT-3 to generate richer prompts for CLIP, DALL-E to synthesize additional
training images, and a lightweight cache model to adaptively fuse CLIP + DINO
predictions, achieving strong few-shot performance without extra manual data
collection. [Zhang et al., CVPR'23]

GPT-3

What a dog looks like?
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PTM for Expert Knowledge Injection

= It uses a dual-branch injection tuning pipeline—augmenting visual features
and using GPT-4-rewritten discriminative textual descriptors—plus an
inference-time re-ranking step. [Zhou et al., ICCV’25]

¢I¢ Top k Prediction Results
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PTM for Expert Knowledge

= It uses a dual-branch injection tuning pipeline—augmenting visual features
and using GPT-4-rewritten discriminative textual descriptors—plus an
inference-time re-ranking step. [Zhou et al., ICCV’25]

Top k Prediction Results

-
‘ .. ‘ ‘/\/\ Selecting top-K predictions

(,0.1901"00%6113‘ o cob UO“DO%B“&
Query Calibration
\/ (q.19) . . . .

Pair-Wise Discriminative Features Generating pair-wise discriminative features among top-K classes
6 has, e does not have: Visual

Pointed ears that are usually E> Encoder

upright and expressive . . e . . . . .. .

£ - Textual Build predictions with pair-wise discriminative features
° has, 6 does not have: Encoder

Stockier, heavier tail with a tuft

of hair at the end

Utilizing pair-wise discriminative features to refine the predictions
(b) Post-tuning Knowledge Injection
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PTM for Expert Knowledge

*Using an LLM to recursively generate multi-level discriminative textual

descriptors (coarse — fine) and matching them with multi-layer visual
representations in CLIP. [Wen et al., CORR’25]
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PTM for Expert Knowledge

= Leverages an external hierarchical semantic tree to embed features in
hyperbolic space. [Hu et al., CORR’25]
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Adapt PTMs for target model training

= Consider the target model f has the same architecture with the PTM g. To determine
the parameter 6, could we fine-tune the whole model on target task 7°?

Pre-Training Task t Task

Requires enough target data.

The model may meet catastrophic forgetting when
we want to facilitate the learned knowledge in the PM.

Target Model

— Partial Model

y

Training Representation

One solution is to reuse only a part of the PTM. — Expansion




Fine-Tune the Whole Model

* Initialize a network with transferred features from almost any number of layers
can produce a boost to generalization performance after fine-tuning to a new
dataset [Yosinski et al., NeurIPS'14].
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Tuning Partial Weights

* Tune the whole model: model may overfit the target task and forget the pre-
trained knowledge.

= Tune partial parameters: the ability of the model is limited.

Tune key components to balance the efficiency and ability.

= Partial-K [[ia et al., ECCV’22]: Tune the top-k layers of a PTM.
= Scale and Shift [Lian et al., NeurIPS'22]: tune the scale and shift parameters of the PTM.
= BitFit [Ben-Zaken et al., ACL'22] : tune (a subset of) bias-terms of the PTM



https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930696.pdf
https://openreview.net/pdf?id=XtyeppctGgc
https://aclanthology.org/2022.acl-short.1.pdf
https://aclanthology.org/2022.acl-short.1.pdf
https://aclanthology.org/2022.acl-short.1.pdf
https://aclanthology.org/2022.acl-short.1.pdf

Tuning Partial Weights

= SSF only Scale and Shift the deep Features extracted by ‘*H*U* H D H U D_*
a pre-trained model to catch up with the performance = G-
a) Training
of full finetuning [Lian et al., NeurIPS'22]. , e
_*H_ ﬁHﬂ ﬂﬂﬂ _ﬂ:@f@ H
(b)lPre-traineZP;nodel & InfeKrenLtzer - (c) SSF-ADAu -
E[ D Frozen -D Trainable D_Featur-e-“i

= BitFit is a sparse-finetuning method where only the bias-terms of the model (or a
subset of them) are being modified [Ben-Zaken et al., ACL'22].
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Tuning Add-ins

Tune add-in-like parameters: adding extra structure and reusing the existed pre-

trained knowledge with the original parameters remain fixed
Tune key components are efficiently learning incremental capabilities

while reducing forgetting of existing knowledge
= Adapter [Houlsby et al., ICML'19]: Add and tune the adapter module after multiheaded attention and two feed-forward layers

= LoRA [Hu et al.,, ICLR’22]: Inject and tune trainable rank decomposition matrices into query and value projection heads

= Prefix [Lietal., ACL'21]: Combine a small, continuous task-specific vector (prefix) as the token-level trainable inputs

Fine-tuning
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LoRA: Constructing low-rank
' adaptation items to harmonize
inputs across variations.

Adapter Adaptmg the outputs
within a Transformer block and tuning matrices to make it both
adjust the output before concat. storage- and compute-efficient.
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Tuning Add-ins

= Tune the PTM (ViT) with additional (visual or textual) prompts.

Visual prompt tuning (VPT) adds extra CoOp [Zhou et al., [JCV'22]:
parameters in the input space while keeping Context optimization to prompt class words.
the model backbone frozen [Jia et al., ECCV’22]. < bt sl -
[‘Ul vy | - 'uM]| [CLASS] | . »  Text Encoder
f, R—— [@Tuned - Frozen | o T 2
| CLIP ]
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MLP W
<o
Backbone-oriented; A
Backbone | Q Sidetune Backbone
O Adapter "
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(a) Existing tuning protocols (b) Visual-Prompt Tuning (VPT)

mi:ta token | T

Meta-Net
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COCOOP [Zhou et al., CVPR’22]:
Conditional Context optimization.

Image Encoder
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Merging Multimodal Modules

= Utilizing pre-trained image encoder and language model to build a multimodal LLM
[Liu et al., NeurlIPS'23]

Language Response X ‘ ’ ,

Language Model f@

ﬁﬁﬁfﬂmﬁ

Projection W
rojection 7. *H

Vision Encoder Xv Image Xq Language Instruction


https://arxiv.org/abs/2304.08485

Merging Multimodal Modules

= Other multimodal LLMs can be built with other projectors

OpenFlamingo combines a pretrained
vision encoder and a language model using
cross attention layers. [Awadalla et al., CoORR’23].

/ﬁﬁ Output: text
. Pretrained and frozen \)

Trained from scratch
during Flamingo training

a very serious cat.

| —

Perceiver Perceiver — n-th GATED XATTN-DENSE
Resampler Resampler ;
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1st GATED XATTN-DENSE

.

Processed text ]

«image> This is a very cute dog. <image> This is

Input: text and visual
data interleaved

This is a very cute dog. gThis is

>

Visual data
pr ing

MiniGPT-4 only requires training the linear
projection layer to align the visual features
with the Vicuna. [Zhu et al., CORR’23].

{The logo design is simple and minimalistic, with a pink line drawing of a flamingo |
standing on one leg in the water. The design is clean and easy to recognize, making it

| suitable for use in various contexts such as a logo for a beach resort or a flamingo- |

I themed event. The use of a flamingo as a symbol adds a touch of whimsy and fun to [
the design, making it memorable and eye-catching. Overall, it's a well-designed logo

\ that effectively communicates the brand's message. ]
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Merging Multimodal Modules

= Other multimodal LLMs can be built with other projectors

BLIP-2 bridges the modality gap between
PTMs with a lightweight Querying
Transtormer, which is pretrained in two
stages. [Liet al., ICMIL'23].

Vision-and-Language
Representation Learning

Vision-to-Language
Generative Learning

. 1
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Querying Transforme
¥ 5 that goes along this photo.
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CogVLM bridges the gap between the
frozen pretrained language model and
image encoder by a trainable visual expert
module in the attention and FFN layers..
[Wang et al., NeurIPS'24].
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Reuse PTM for optimization

= Reuse PTM to find a better path from the initialization to the optimal point.

Pre-Training Task Target Task

Without PTM With PTM




Model Reuse via Regularization

= Hypothesis Transfer Learning (HTL): matches the weights between the target and PTM
[Kuzborskij and Orabona, ICMI’13] [Kuzborskij and Orabona, ML]'16]. Given gg, we learn fy via

H}ien £(fo(x;190),y;) +Q(6,0)
(x;,yi)~T

(1(+) measures the discrepancy between two sets of parameters, which could be
implemented via different norms.

Regularize parameters with £, norm Make prediction for the residual part.
If A =60 — 0, then for a linear model
Q(0,0) = 1116 — 013
fo(xilge) = go(x:) + (A, x;)

Layer-wise regularization for deep 0(6,0) = A||A|12
) - 2

neural network.
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Model Reuse via Regularization

= L*-SP: consider the mixed norm, also the norm on the target parameter [Li et al., ICMI18]

0(6,0) = A6 — 0lI3 + 22116113

=« L2-SP-Fisher: use the estimated Fisher information F to define the distance between 9, ©

0(6,0) = (6 —0)"diag(F)(6 — 0) + 1,615

« L1-SP: £1-norm is used

Q(8,0) = 1]|6 — 0|2 + 1,116]|3

Table 2. Average classification accuracies (in %) of L?, L?-SP and L*-SP-Fisher on 5 different runs. The source database is Places 365
for MIT Indoors 67 and ImageNet for Stanford Dogs 120 and Caltech 256.

MIT Indoors 67 | Stanford Dogs 120 | Caltech 256 —30 | Caltech 256 — 60
L? 79.610.5 81.4+0.2 81.5+0.2 85.31+0.2
L?-SP 84.2+0.3 85.1+0.2 83.5+0.1 86.4+0.2
L?-SP-Fisher 84.0+0.4 85.1+0.2 83.3+0.1 86.0+0.1



https://arxiv.org/abs/1802.01483

Why Hypothesis Transfer Helps?

= For the binary classification case with linear classifier [Kuzborskij and Orabona, ML]'16],

Theorem 2 Let hy g be generated by Regularized ERM, given the m-sized training set S sampled i.i.d.
from the target domain, source hypotheses {hi" : |h{" || < 1}, any source weights 3 obeying Q2(3) <
p, and A € Ry. Assume that {(hy, 5(x),y) < M for any (x,y) and any training set. Then, denoting
K = % and assuming that A\ < k, we have with probability at least 1 — e~ ", ¥Yn > 0

. Rk | R pK;2 Mn
R(h < Rg(hg O 4

m log (1 + 1/ o

R k [ R° Rsep k [ VRMn \/Z
< - — L
Rs(hw,5)+0(m()\ + X >+m( ) + 3 : (5)

= For the multi-class case with linear classifier [Ye, Zhan, Jiang, Zhou, ICML’18][Zhao, Cai, Zhou, MLJ’20].

= Hypothesis transfer on deep neural network [Gouk, Hospedales, Pontil, ICLR'21].
= Other analysis [Aghbalou et al., ICML'23].
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Model Reuse via Feature Matching

* Minimize the discrepancy between the features generated by PTM and the target model:

min ) £(fy(xilge),y) + Ofo (), go ()
(xpyi)~T

* fo and gg output the predictions (logit) or the middle layer features.

* DELTA [Lietal., ICLR19]: = BSS [Chen et al., NeurIPS'19]:
* Feature alignment * Feature alignment based on

with attention. 2 corresponding angle.
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Knowledge Matching as New Objective

L Q( fo(x;), 96 (xl-)) measures the discrepancy between predictions.

= Knowledge distillation [Hinton et al., CORR’15] match the PTM and the target model in the

prediction space, i.e., the output predictions of both models should be similar.

Q(fo(x), 9o (x)) = KL(fp(x;) /7, go (x:) /1)
The logit should be transformed with SoftMax operator.
The temperature 7 calibrates the predictions.

= Other kinds of divergence measure, or knowledge types are also considered [Gou et al., [[CV’21].

Teacher Model

o=  Logits
Data == Distillation Data ==
Loss
Logits J B Lo gits

Student Model
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Knowledge Matching as New Objective

= Match the relationships between instances [Park et al., CVPR’19] [Ye, Lu, Zhan,CVPR’20], prove

to be powertul tools for achieving alignment.
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PTM Helps Optimization

* PTMs can also influence the optimization process of the target model. The choices of different
hyper-parameters such as learning rate, weight decay [Mahajan et al., CoRR’18] [Kornblith, Shlens, Le,

CVPR'19], momentum [Liet al., ICLR’20] during the vanilla fine-tuning of the target model are explored.

birds, imagenet, n=0.01, n= 256 birds, imagenet, A =0.0001, n =256

50
—e— A=0.0001, min topl=17.41, m=0.0 /
—e— A =0.0, mintopl=17.21, m=0.0

Optimal hyperparameters for
fine-tuning depend on both
the target dataset and the
similarity between the source
domain and target domain.
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domains that are close to the source domain
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Outline

*Taxonomy of Model Adaptation
*Adapt PTMs for target data preparation
*Adapt PTMs for target model training
*Adapt PTMs for target model inference
*Other topics in model reuse

»Conclusion



Taxonomy

of Model Reuse

{

Semantic/rule-based
methods

For small models: Taskonomy [Zamir et al., 2018], Semantic Specification [Zhou and Tan, 2024]

}—(

For large models: HuggingGPT [Shen et al., 2024], VisProg [Gupta and Kembhavi, 2023]

—( Model Selection )—

Metric-based
methods

For small models: GBC [Pandy et al., 2022], NCE [Tran et al., 2019],
LEEP [Nguyen er al., 2020], Deep Attribution [Song ef al., 2019]

For large models: LOVM [Zohar er al., 2023], SWAB [Yi er al., 2024]

Learning-based
methods

For small models: Task2Vec [Achille e al., 2019], MRE [Ding et al., 2022],
Model Spider [Zhang er al., 2023]

For large models: Mixture of Experts [Jacobs er al., 19911, Model-SAT [Zhang er al., 2025],
Zooter [Lu et al., 2024], Routoo [Mohammadshahi et al., 2024],

Adapt PTMs for
target data preparation

For small models: HMR [Wu er al., 2019], C-LoRA [Smith er al., 2023]

e e

For large models: VCD [Menon and Vondrick, 2023], CuPL [Pratt er al., 2023]

N YA Y O Ay O

VAN U N N N Y S N

Model Reuse

e e e T

—(Model Adaptation )—

Adapt PTMs for
target model training

For small models: ¢5 [Li er al., 2018], SN-GANs [Miyato et al., 2018], REFORM [Ye er al., 20211,

Knowledge Transfer [Hinton er al., 2015], Twice Learning [Zhou and Jiang, 2004],
FitNets [Romero er al., 2015], RKD [Park er al., 2019]

~

i

Adapt PTMs for
target model inference

v
For large models: MiniLLM [Gu er al., 2024], LoRA [Hu er al., 2022], )
Model Reprogramming [Chen, 2024], LLaVA [Liu er al., 2023], BLIP-2 [Li et al., 2023]
(" For small models: NCM [Mensink er al., 2013], Head2Toe [Evci er al., 2022],VQT [Tu er al., 2023,
FisherMerging [Matena and Raffel, 2022], WiSE-FT [Wortsman et al., 2022],
OTFusion [Singh and Jaggi, 2020] )

i

For large models: RAG [Lewis et al., 20201, CoT [Brown et al., 2020]

Model Assembly [Yang er al., 2022], Model Representation Learning [Schiirholt er al., 2022], Model Editing [Mitchell er al., 2022],
Model Repair [Luo et al., 2023] Model Relationship Discovery [Yu and Wang, 2024] Managing LLMs [Shen er al., 2024]

Zhou and Ye, A Unifying Perspective on Model Reuse: From Small to Large Pre-Trained Models. IJCAI 2025




Adapt PTMs for target model inference

Main idea: construct an embedding space using the PTM, resulting in more
discriminative features.

Directly using the pre-trained features as the Merging models with Fisher-weighted
encoding for target task inference averaging [Matena et al., NIPS'22].
Fisher
\/ Intermediate Fine-tuned { WJO{ Fy ] + ‘ Wz]O[ F, ]
/ X Pre-trained
c* = argmin d(x, p.),
ce{l,....,C} O
1
He = E Z L,
1Yy =c

- g
@ * O Model =~ — Fine-tuning Merging
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PTM as Better Representations

* Linear probing : freezing the backbone (PTM) and

adjusting only the fully connected (FC) layers — I — —
based on downstream task data.

Frozen Backbone FC
Layer

*The Nearest Class Mean (NCM) classifier assigns images to

the class whose mean is closest. PITM could enhance this . .
¢" = argmin d(z,u,.),

process by improving feature representation and metric ce{L....0}
learning [Mensink et al., TPAMI'13].
: : : 1
= A powerful baseline method in few-shot learning [Wang et al., e =77 ) T
€ iy;=c

CoRR'19], class-imbalance learning [Kang et al., ICLR’20], and class-
incremental learning [Rebuffi et al., CVPR’17][Zhou et al., CoRR'23].
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PTM as Better Representations

- Head2Toe selects the most useful features * Visual Query Tuning (VQT) learns to
from the entire network and trains a linear select rather than adapt intermediate
head on top [Evci et al., ICML/22]. features [Tu et al., CVPR’23].
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PTM for Prediction Aggregation

* Logit ensemble and probability ensemble (based on activations).

Agg(fo(x), 9o (x))
= Note: need to consider the calibration issue.

Create a set of classifiers individually based on Apply Gaussian Discriminant Analysis together
the same PTM. In inference, vote these classifier with the zero-shot classifier to the downstream
heads by adopting a set of temperatures [Wang et al., classification of CLIP [Wang et al., ICLR'24].
AAAI'23].
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Model Merge with Weight Average

= Average the weight of two homogeneous models.

* The size of the model does not increase in the inference stage.

Weighted average the weights {0}
directly, without training process.

T -dgp

[

Jde fo

Could be extended to model reuse from
multiple PTMs.

Due to the permutation symmetry of
learned  weights, an  additional
alignment should be made [Singh and
Jaggi et al., NIPS'20] [Li et al., CORR’23].
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Accuracy on the distribution shifts

Model Merge Helps Optimization

= WiSE-FT [Wortsman et al., CVPR’22]: weight interpolation after standard fine-tune.
= 0 is the initialization, 6 is the fine-tuned weights on 7', then we set

0=(1-—a)®+ab

Keep the zero-shot ability of a PTM after fine-tuned under distribution shift.
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Model Merge Helps Optimization

= Model Soup [Wortsman et al., ICML'22] introduced a technique that involves averaging the

weights of multiple models fine-tuned from the PTM.

ImageNet train loss Avg. error on 5 distribution shifts

w
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ImageNet test error
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The solution with the highest accuracy is often

lies between fine-tuned models
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Model Merge

= Other strategies to merge PTMs.

Merging Models with Fisher-Weighted | | RegMean: minimize the prediction differences
Averaging [Matena et al., NIPS'22]. between the merged model and the individual
models, with closed solution [Jin et al., ICLR’23].
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Why Model Merging Helps?

* Linear Mode Connectivity (LMC): the minima obtained by gradient-based optimizer are not
walled off in isolated valleys, and a direct linear path connecting two such independently

trained networks usually always leaves a low-loss manifold [Garipov et al., NeurIPS'18].
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Model Fusion: Training-Free Ensemble

= Learn a mapping matrix to rectify the weights of different layers to address the model
heterogeneity, e.g., OT-Fusion [Singh and Jaggi et al., NIPS'20] [Ye et al., TPAMI'21].

= “zip”: merge features within each model. Then partially zip the models up until a
specified layer, naturally creating a multi-head model [Stoica et al., ICLR’24].
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Interpolation between Model A and a permuted Model B lies outside the minima for both tasks.
Ziplt! Finds a model that lies in a low loss basin for both.
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Heterogeneous Model Reuse

* When there exist differences between the pre-trained task and the target task, as well as their

architectures, some model reuse approaches should be adapted accordingly.
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Homogeneous Data Transformation

= Transform all the datasets into the homogeneous form, so that the reduce the discrepancy

between their models. For example, random projection on tabular data [Bonet et al., Neur[PSW’23].
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Homogeneous Data Transformation

Extract class-specific prototypes.

. —

Calculate the distance to those prototypes,

Sort and select the K smallest.
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[Ye, Zhou, Zhan, NeurIPSW’23].
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Model Growth

= Reuse a smaller PTM for a larger target model.
= Net2Net [Chen et al,, ICLR’16] expand the width of neural networks by duplicating neurons.
Given the pre-trained weights ©; € R4*4, the target weight is 8; € RP*P, then

0, =1 S_,|(diag(S;-,1) +)71e, [I S|],

Jge
S, € {0,1}9%(P=4) i5 3 random selection matrix that indicates the
@ column indices to be duplicated at the [-th layer.
- - * bert2BERT [Chen et al., ACL'22].

= Learning to Grow (LiGO) [Wang et al., ICLR’23] learns a linear mapping between
two parameter spaces before expanding the model size.
* Mango [Pan et al., NeurIPS'23]: consider the inter- and intra-interactions among

C _,/}f the weights of both the pretrained and the target models.
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Reuse Adaptive Model

= Given input from heterogeneous tasks, we can either consider a dimension-invariant
transformation or learn an adaptive model to fit heterogeneous tasks.
= Meta-learn a transformer and make prediction with its adaptation/in-context-learning ability.

Heterogeneous classes: Heterogeneous features:
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Tuning Adaptive Partial Weights

= Making the tunable part adaptive given the input.

* FiLM layers influence neural network computation via t
. . . e Bic 1
feature-wise affine transformation based on conditioning <
information [Perez et al., AAAI'18]. - -
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[Shin et al., NeurIPS'21].
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\
Xi > fp(x, 0) —)representation

A

In few-shot learning: make the model adaptive given
the support set [Oreshkin, Rodriguez, Lacoste, NeurIPS'18].

—— Repetitive computation
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Regularization + Semantic Mapping

* When dealing with heterogeneous weight spaces due to the change of features,
additional mapping and attention layers are applied to facilitate alignment.

Feature Evolution @ e e o e e e o e =

\ 4

I O IC
2 I
: Ty I
Label Vanished Survived Augmented I 1 |
o Feature Feature Feature | 11 I
Q | A _
& Y, ng) ng) Xr=1 X;i i X Mcra fcatzucl Q(Q @)
m  Compressing = () I e I )
e |28 I . =276 - 03
g_. (C-stage) : Yiii : o = 2
o |
S | Yo, Xg) ngl) : Meta-feature %, I
—————————————————————————————————————————————— CCONSTIC [
®) (=) . s < iccon‘gt:l uct
Y1 +1 X7 41 X1 : d’ d d :
) X;)H X%)w I Instance Space I

OPID [Hou, Zhou, TPAMI'18]: compress important  ReForm [Ye et al., TPAMI'21]: constructs meta-
information of vanished features into functions representation for features, which depicts the

of survived features, and then expand to include relationship between features in different
the augmented features. stages. Then, an OT map learned in the meta-

siace could be aiilied to the model siace.
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Semantic Mapping for Class Set Discrepancy

= When dealing with heterogeneous weight spaces due to the change of classes, the
semantic mapping could be applied to their predictions.

ReForm [Ye et al., TPAMI'21]: the meta-
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Co-Tuning [You et al., NeurIPS'20]:
discover the semantic mapping via
the predictions of PITMs on the
instances from the target task
(among the source class set) and the

y i i
tariet class labels of those instances.
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Generalized Knowledge Matching

= Apply a feature matching component to = Generalized KD, where the student could have
brldge the feature gap between target the same, different, or partlally Overlapped
o . '

0@,‘30 — m—
Teacher feature O4C . 1 Embedding
I A3
backbone oI r .1 5 iemmmmm=2e L L Backbone
net,(-) t Locality- BCE |
. 0ss e
Sensitive — e ~
l Hashing Lisn Teacher’ /' Suudent \\ Standard
image cacher s I tudent’s Knowledge Distillation Top-Laver
MSE 105 L,;5e Training Data \ Training Data / p-1.ay
x \ / Classifier
t ~e__-’
=T --=- [ -—==
(T I P —
Student l Llnear' | feature Classifier CE loss “ >
backbone |=t* embedding , > —_ - - ! == . — ,
! ! fs fCZS(') Lc 1 g = B \ ¥
nets() | |1 fels() A ) s a | ) i

Distillation
Flow

| é & N
Cross-Task Generalized

Knowledge Distillation Knowledge Distillation Training Data

We can take advantage of relationship-based
methods which do not depend on the feature
dimension and magnitude.

The linear embedding layer also rotate the feature
space and align the features of two models.
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Reuse Multiple PTMs

* The importance of different PTMs

are diverse.
>
C@ga N T h Transferability metric to weight
> @ - different PTMs.
4P’ T
w.
Model Zoo &

= Select one of them to keep the
efficiency and ability.



Knowledge Amalgamation
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[Luo et al., I[JCAI'19] | [Shen et al., AAAT'19]

!
Features of all teachers are transformed : A two-step strategy: learn the compact feature
into a common space and the student | representations from teachers and then the network
is enforced to imitate them all so as to | parameters in a layer-wise manner so as to build the

amalgamate the intact knowledge. student model.
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https://arxiv.org/abs/1811.02796

Zoo-Tuning

= Aggregate parameters from heterogeneous PTMs [Shu et al., ICML'21].

= With the learnable channel alignment layer and
adaptive aggregation layer, Zoo-Tuning adaptively

Train Loss / Prediction

A—
L L] —T—
aggregates channel aligned pretrained parameters
to derive the target model.
Prediction wi S |
T T T T ST ST T T T s s T s s s s e EE T \I . Source Model 1 / Parameter Aggregation >
' _y| TE-Adapti L -~
: | W{‘ | ’ WLL | | w?l;l ‘ g_ ) Aggre;IaJtil(‘:: w
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i | W{ | ’ wal | | Wﬁn ‘ E- 7 AggregIaJtion T w! % : : v |
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e S N e a0 ] |
! I TE-Adaptive = BatchNorm
i | wi | ’ w} | | Wi e Aggreggtion T “;1 ! ; Ada,\i hiad ‘ /
-------------------------------- i /
Data Path —> - F+x
Parameter Aggregation ---> Test Data %‘;m
(a) Adaptive Aggregation (AdaAgg) Layer (b) Integrating AdaAgg Layers in a Residual Block


https://proceedings.mlr.press/v139/shu21b/shu21b.pdf

Knowledge Factorization

= Factorize task-agnostic (shared across multiple tasks) and task-specific (for a certain
task) knowledge from the teachers [Yang, Ye, Wang, ECCV’22].

' %%ﬂ

Multi-Talented Teacher Network

= Knowlegde Factorize: 1 X5 +S [
=== Sub-Knowlegde Distill: 27 X § ,‘I
/

Model Hub g® Custom Deploy
—

Common
’ ’ ’ Knowledge ’
Model ’ ’
L]
Knowled,
Spe;i;‘: &fgds ’ ’ ’ ’ Types of Knowledge
’ - g@‘_' ¢ No Knowledge Ieakage
. - @ Factorization ) :
: ’ ’ ' H(T.) ’ ’ ’
: E j i TN Minimize w ﬂﬂ @;I
' isentangle Disentangled ) “av I(Z,T;) ﬁ——b [ ] [ ] [ ]

Factorization Factor Networks HEZ) X Retrain & Finetune

%

27110108 ]

Number of Paramters

Given a pretrained teacher, KF = Structural Factorization: decompose the teacher into a set
decomposes it into several factor of factor networks. Each factor network comprises a shared
networks, each of which masters common-knowledge network and a task-specific network.
one speciﬁc know]edge factorized . Representation Factorization disentangles the shared
from the teacher, while remaining knowledge and task-level representations into statistically
disentangled with respect to others. independent components.


https://arxiv.org/abs/2207.03337

Reuse Multiple Models

* Prediction aggregation [Ye et al., CIKM’15], which post-fuses the multiple

predictions from various PTMs.

PN
L . § Prediction
> > Yo, (x1) £ pm?
> T
= . 2
L 7 > 96, (x1)
T v
> = 983(xi)
-

Reuse multiple multi-modal PTMs. Gather predictions
into matrices {A4,..,Ay}, the final predictions are
obtained with the consist weight propagation among
different modalities [Yang et al., [CAT'17].
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Learning and Calibration

= Calibrate the prediction of multiple local models

in Multi-Party Learning [Wu et al., ICML'19].

Algorithm 1 HMR

hyr hea input: 1 1 model f_i_\ )
Parties 1,2, - -- , n, each owns a local dataset S; and a ErEErTE model ensemble
n " local model h;. Example communication budget N. J
1/4
3 4 output:. 7 . . — 'K— —T
Calibrated local models hy, - -+ , h,,. ] calibration PEEERAEEE .
fese hgrLca) feee procedure: . procedure ' calibration
1: Each party broadcasts its local model to others. local ' procedure |
check MPMC-margin > Inn.er iteration counter 7" = 0 Specs . (optional)
3: while T" < N do \ )% q )
4:  Sample a party i according to |S;|/ >, |S;]. ‘ T T ] T
. alibrate 5:  Party ¢ randomly selects an example (z,y) € S;.
calibrate galiorate 6:  Party i computes MPMC-margin pg (z,y) accord-

ing to (7). Records the party i, i~ and maximum
incorrect class y~ as in (8).
7:if pu(z,y) <0 then

[Tang et al., IJCAI'23] extends the HMR

8: Party ¢ sends (z,y,y ) toiT andi™. . . .. .

o Pjitzziefa[}b(;rgg%; with (.9 5-). paradigm which utilizes different types of
10: Party i~ calibrates h; - with (z,y,y ™). f L3 . . .

. Party i+ and i bronscast theirwrcted model specifications of local datasets in a different
120 ifit #iori~ #ithen way, and aggregates the results.

13: T=T+1.

14: end if

15:  endif

16: end while
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Outline

*Taxonomy of Model Adaptation
*Adapt PTMs for target data preparation
*Adapt PTMs for target model training
*Adapt PTMs for target model inference

= Other topics in model reuse

»Conclusion



Model Reuse for Interpretability

* Reuse a strong model, which helps improve the generalization ability of a interpretable
model such as decision tree [Zhou, Jiang., TKDE'04].

Generate extra training examples.

O
© o > S fj\x ggggggg
A A jod% /J\‘ 8 \4_}
O A A —> > *707\7 (vrs) B > -
o A > Lon e
Learn a strong model such as NN. Learn an interpretable model over the

augmented dataset (twice learning).



https://www.lamda.nju.edu.cn/publication/tkde04.pdf

Reuse Cross-Metric Models

= Instead of optimizing domain-specific performance measures (e.g., accuracy, AUC, F1-
Score, NDCG, MAP) independently, the metric-specific models could be reused from a
PTM learned based on the main metric.

CAPO [Liet al., TPAMI'13]: utilize the relatedness among multiple performance metrics,

and implement the classifier in an additive form:

min ) (fa(xilge) v) +0(6,0)
(xpy)~T
M
fo(xilge) = ) amgll, (k) +wTb(x)
m=1

= Adapt-Boost [Ding et al., NeurIPS’18] reuse models for different objectives in a boosting manner.



https://www.lamda.nju.edu.cn/publication/tpami13capo.pdf
https://proceedings.neurips.cc/paper/2018/file/d403137434343677b98efc88cbd5493d-Paper.pdf

Cross-Modal Reuse

* Reuse multi-modal models, so that the generalization ability of a certain branch (for one

modal) could be improved in the inference stage.

Raw feature x

|

Convolutions Pooling Fully connected

Sophisticated
6 model/features z

FMR [Yang et al., AAATI'17]: transfer the ability
from tabular to image modality. FMR
probabilistically ”“knocks down” specific
blocks, which enables the target model to
effectively memorize and retain valuable
knowledge from the PTM.

Edge End Front End Scenarios

=B 5>
Back End l T Features Back End
=" f‘.zu Q= E o) B8
2
o | BB g
; Difference of Models L @ ﬁ
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Model V1 — - ~ :@
Collected " " s St N
e s B = E o+ = e
| Cached Data Model vz | Model V1 DoM(V2-v1)  Mode |v2
. Multiple_Model Reuse  _ . . Model Compensation, _ , /

Use the hidden layer representation of the source model
to train the target depth model, which is superior to the
approach using the limited data in target domain. In
detail, the target hidden layer representation is
improved by using it to reconstruct the source hidden-
layer representations [Luo et al., ICME'19].
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Example: Class-Incremental Learning

= Given a sequence of training tasks containing different classes, class-

incremental learning aims to build a unified classifier for all seen classes
Task 1 Task 2 Task 3
‘ S Bk

Pre-Trained

=

PTM-based CIL

Test Set 3

* In each training stage, the algorithms needs to reuse the current model and

new dataset to incoriorate new knowledie



Example: Class-Incremental Learning

* When training from scratch, the previous model can be utilized to provide
supervision signals to prevent forgetting

Training level: Distillation Training level: Regularization

Distilling logits to align the knowledge between The importance of different parameters shall vary
old and new model [Li et al., ECCV’16]. for different tasks. EWC builds regularization
Task 1 term by forcing importance parameters to stay

r unchanged [Kirkpatrick et al., PNAS'17].

B

= Low error for task B == EwC
= Low error for task A = L2

. == NO penalty

1
min £(f (x),y) + Eﬂz Qi (6r" - gk)z
K
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Example: Class-Incremental Learning

* When training with PTMs, extra models can serve as the generator for external

knowledge and data.

Data level: Expert Knowledge Injection

Generating descriptions for related classes to
foster cross-modal alignment [Zhou et al., I[CCV'25].

Visual Encoder *
1 Prototypes l
! Similarit
Augmentation I Shared e @ O e 1”?(;:? y

Visual Encoderﬁ'i / ] D D _Ii‘

Expanding Injection Units Contmstwe

uery (Eq.9)
Aphotoof |, Textual Encoder* -—*] U D —'_I
a cat
‘!5 1

V : Shared Similarity
. Loss
Almond-shaped eyes with reflective pupils. * T (Eq. 5)
Pointed, upright ears that swivel. Te
— extual Encoder

Sleek, flexible tail used for balance.

(a) On-the-fly Knowledge Injection

Data level: Data Generation

Generating images of previous classes with stable
diffusion for replay to prevent forgetting [Wu et al.,

CVPR’25].

Generating Before Task

Approx. downstream task data Approx. pre-training data

= e = 1\

[ Task t — 1 ] [ Task 2 ] { Task 1 ] Diverse |
Class Name | *** | Class Name Class Name Concepts !

Sample
|| &Template O

Add Stable

" Diffusion

A photo of a
{minibus} .

it oy l Match
Task t
Class Name

Sw

Synthetic Image-Text Pairs ]

?

v
=M | Train J Distill 9
l{b , VLM . VLM

Bt—l
Task t Data

Distilling During Task
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Example: Class-Incremental Learning

* When reusing pre-trained models, generalizable features can be adopted by model

expansion
Inference level: Reuse Representation Inference level: Model Merge
Aggregate the features of PTM and adapted Building a dual-branch network. The online
model for stronger representations [Zhou et al., learner is updated via CE loss, while the offline
[JCV'24]. learner is updated via EMA. During inference,
as sk 2 O 2 the prediction is achieved via logit ensemble
(G ass (',« ’
{D-- o WS- e s [Gao et al., ICCV'23].
W /
AdaptMLP MLP
[ W o T A S—
ooy EEn
[ Clssifr | [ Offine | . m—
Attach T Accumulation/i\ i | e? fon ‘.3
(" Stage 2 - Merge') S ,_____II_____\. % i %
~——_ Prototypes £ Comine } |11 ] B
PTM i () j Learning 3 b T %
’< | Extract > (Wl i T i H Hidden States I S
Adapted QD ver [T ] | QO 0 O O] } ] )
Model \ MuIti-Hea_@ (a) Training (b) PET Modules (c) Inference
— / . XN _J
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Discussion: Making PTMs Reusable

= Mimic what the model will

meet in the deployment

Meta-Training stage in the pre-training.

(seen task)

= Make the model reusable

(be reused in a more

Meta-Ti o e .
(onseon toak) efficient and  effective

manner) for unseen tasks.

min z > g% $,8),)

(s, 92) (xy)~Q [Vinyals et al. NIPS’16] [Finn et al. ICML’17]



Discussion: Use Model and Model Reuse

* Use a model: direct make = Reuse by "'using”’ the PTM: utilize the in-context-
inference with the model. learning ability of LLMs [Dong et al., CoRR’23].
Taking the demonstration and a query as the input, large
Use the model ——A language models are responsible for making predictions
/" L "( ) (Review: Delicious food!  Sentiment: Positive |
k Demonstration || Review: The food is awful. Sentiment: Negative
Examples
S N The PTM 1is not Template New Review: Terrible dishes!  Sentiment: Negative
adapted fOT’ the Review: [Text] Query '{kReview: Good meal! Sentiment: )
target task. Sentiment: [Label] 1 Input
T TextT Label Large Language Model
Delicious food! 1 Parameter Freeze
ML The food 1s awful.
Algorithm Terrible dishes! 1 Output
Positive
T » Transformer learn unseen models implicitly with
- ‘}_1 demonstrations [Garg et al., NeurIPS'22].
T L » Transformer works in a similar way as gradient-descent

optimizer implicitly [Akyiirek et al., ICLR'23].
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Application Platform: Beimingwu

Beimingwu:
A Learnware Dock
System

Beimingwu, as the first systematic open-source ( i 5
implementation of learnware, offers a preliminary N\ w ,,
e/

research platform for learnware-related studies,
and aims to help users efficiently solve machine
learning tasks without starting from scratch.

Support the entire process including the submitting,
usability testing, organization, identification,
deployment and reuse of learnwares.

https://bmwu.cloud

Elements:
P
Learnware: unified unit
G Specify a unified learnware structure )
( . )
Dock system architecture
. Design an integrated architecture )
§

p
Key algorithms

= Implement baseline algorithms for each step )

Infrastructure

- Engineering optimizations for computation
._and storage

~



https://bmwu.cloud/
https://bmwu.cloud/

An example based on Beimingwu

How to solve a new machine learning task with learnware dock system?

Beimingwu: a recently developed learnware dock system for research platform

Beimingwu provides unified
interfaces to identify and deploy
learnwares with just a few key
lines of code.

# search learnwares
learnware_ids = client.search_learnware(user_info)

# load learnwares
learnware_list = client.load_learnware(learnware_ids)

# reuse and predict on user own task
y_predict = Reuser(learnware_list).predict(X)

With the constant submission of learnwares and advancements in algorithms, the
interfaces will be increasingly powerful.




Use learnware dock system to solve new tasks

I Generate statistical specification

@ Generate user info

o ® Task semantic specification: No leakage of raw data
..:).o % - Data type: ‘table’ - Task type: ‘regression’ - Scenario: ‘Bussiness’
L .. New user task Utilize Beimingwu to Generate statistical specification by API:
HP I H L H requirement rkme = generate_stat_spec(type="table", X=data)
- statistical and semantic specification for s :
o r R —— Submit the requirement to Beimingwu
Beimingwu identifies helpful learnwares
user ta S k — Helpful combination of learnwares
Helpful single learnware ‘K‘ b Mgl ccommentston.

@ Single learnware recommendation ‘similarity to your tasks. Combining these learmwares can lead to greater performance.
The lsted "

recommended as each of them matches your task requirements in tarms of statistical Stat'lst'lcal

Total specification score 93

@ Beimingwu identifies helpful learnwares e

838 Morket Basket Anolyzer 823 Market Basket Analyzer

I
"

@ Load learnware locally

- single and multiple learnwares - various data type - homogeneous and heterogeneous feature spaces

Another way: Identify helpful learnwares from numerous learnwares by learnware package client API:

(4) Reuse learnware on own data

Learnware_ids = client.search_Learnware(user_info)["multiple” ][ "learnware_ids"]

Return helpful learnwares

II A unified way to load learnwares

W|th un |f|ed |nte r'faceS an d d rCh IteCtu re, Utilize Beimingwu to load learnwares locally by learnware package client API:
the capabilities of the system will improve runnable. Bptiondocker ) | Carare tAELearniare 1, | ot specicton

Returned learnwares

continuously through the constant submission of Reuse loaded learnwares on own datz

Unified reuse interface

- Multiple model reuse — Heterogeneous reuse || Reuser = ReuserName(learnware List).fit(data)
- Data-free and data-dependent - y_predict = Reuser.predict(X)

IV Reuse learnwares on own data

learnwares and advancements in algorithms.

77




Beimingwu: A learnware dock system

How to solve an arbitrary new task with Beimingwu

Beimingwu streamlines the model development through learnware paradigm

# generate statistical specification for task data
stat_spec = generate_stat_spec(data_type, X) 1. No need for extensive data

2. Minimal machine learning
# search learnwares expertise

learnware_ids = client.search_learnware(user_info)
3. Local deployment of diverse

models
# load learnwares

learnware_list = client.load_learnware(learnware_ids) 4. No leakage of original data

# reuse and predict on your task
y_predict = Reuser(learnware_list).predict(X)



Conclusion

= Model reuse becomes an effective solution in various domains, such as for tabular data,
visual, and language tasks.

* Model reuse methods can be categorized from various aspects
* Homogeneous or heterogeneous
= Reuse one-model or multiple models
* Reuse from data-level, training-level, or inference-level.
The ideas to reuse PTMs from multiple fields could be shared.

= To further boost the ability of model reuse, one important step is to identify which one
or more PTMs to reuse from the model zoo.
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