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Adapt PTMs for target data preparation

▪ PTMs serve as experts capable of generating enriched data for the target task, or 
filtering noisy data for the target task, enabling the target model to achieve better 
generalization ability. 

Filter the existing training set. Generate related data.
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PTM for Data Denoise
▪ PTM can rectify the noisy instances 𝑥𝑥𝑖𝑖 or labels 𝑦𝑦𝑖𝑖 in 𝒯𝒯, based on which we 

make the target model be trained on a denoised dataset.

Mix pseudo label from PTM and the true label [Cheng et al., EMNLP’23]. 
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PTM for Data Selection

Utilize pre-trained model to weigh different 
instances in curriculum learning for a faster 
convergence rate [Zhao et al., AAAI’20]. 

PTM utilizes various criteria (e.g., the 
prediction uncertainty of the PTM) to set the 
weight of the target examples [Zhang et al., 
ECCV’20][Liu et al., AAAI’23]. 

▪ PTM can selects the important examples 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 , by prioritize the learning on 
them, the negative effect of noisy data is mitigated.
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PTM for Richer Labels
▪ PTM provides better supervision via modified labels. By learning on the enricher 

supervision, the target model generalizes better.

PTM can help obtain pseudo labels, or even the 
distribution of labels [Geng, TKDE’16][Gao et al., TIP’17].

[Le et al., WACV’23]

PTM can provide supervision (pseudo 
labels) for unlabeled data [Yen et al., CoRR].
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PTM for Data Augmentation
▪ PTM saves the (sufficient) statistics of the pre-trained data, which is able to generate 

synthetic data in the reuse phase.

Set PTM as the Reduced Kernel Mean 
Embedding (RKME) [Wu et al., TKDE’21].

Utilize PTM to synthesize examples with 
Gaussian augmentation [Yang, Liu, Xu, ICLR’21].

Generate synthetic data with RMKE.
Generate synthetic data given 
gaussian sufficient statistics.
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PTM for Data Augmentation
▪ PTM saves the (sufficient) statistics of the pre-trained data, which is able to generate 

synthetic data in the reuse phase.
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Similar classes share similar 
statistical information Calibrate and generate samples for few-shot classes



PTM for Data Augmentation

▪ Utilizing GAN/Stable Diffusion to serve as data generator to generate source instances.

[Shin et al., NIPS’17] [Gao et al., ICML’23] [Wu et al., CVPR’25]

▪ PTM saves the (sufficient) statistics of the pre-trained data, which is able to generate 
synthetic data in the reuse phase.

There exists a gap between the target data and generated data, which should be carefully considered in model reuse. 
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PTM for Expert Knowledge
▪ Utilizing PTM to obtain auxiliary meta-data (a.k.a. privileged information) [Vapnik, Vashist, 

NN’09] [Vapnik, Izmailov, JMLR’15].

▪ Take advantage of ChatGPT to provides expert knowledge, e.g. utilizing ChatGPT to 
automatically generate descriptors given class names. Then perform image recognition 
by comparing to the category descriptors based on CLIP [Menon et al., ICLR’23].

We can obtain multiple zero-shot 
classifiers based on the generated 
texts, which helps the final prediction.
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PTM for Expert Knowledge

14

▪ Uses GPT-3 to generate richer prompts for CLIP, DALL-E to synthesize additional 
training images, and a lightweight cache model to adaptively fuse CLIP + DINO 
predictions, achieving strong few-shot performance without extra manual data 
collection. [Zhang et al., CVPR’23] 

For data augmentation
For expert knowledge
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PTM for Expert Knowledge Injection
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▪ It uses a dual-branch injection tuning pipeline—augmenting visual features 
and using GPT-4–rewritten discriminative textual descriptors—plus an 
inference-time re-ranking step. [Zhou et al., ICCV’25] 
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PTM for Expert Knowledge
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▪ It uses a dual-branch injection tuning pipeline—augmenting visual features 
and using GPT-4–rewritten discriminative textual descriptors—plus an 
inference-time re-ranking step. [Zhou et al., ICCV’25] 

Utilizing pair-wise discriminative features to refine the predictions

Selecting top-K predictions

Generating pair-wise discriminative  features among top-K classes

Build predictions with pair-wise discriminative  features 
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PTM for Expert Knowledge
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▪ Using an LLM to recursively generate multi-level discriminative textual 
descriptors (coarse → fine) and matching them with multi-layer visual 
representations in CLIP. [Wen et al., CoRR’25] 

Generating descriptions 
in a top-down manner 
via PTM
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PTM for Expert Knowledge
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▪ Leverages an external hierarchical semantic tree to embed features in 
hyperbolic space. [Hu et al., CoRR’25] 

Generating semantic tree via PTM
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Outline
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Adapt PTMs for target model training

▪ Consider the target model 𝑓𝑓 has the same architecture with the PTM 𝑔𝑔. To determine 
the parameter 𝜃𝜃, could we fine-tune the whole model on target task 𝒯𝒯?

Pre-Training Task

PTM

Train

Target Task

Target Model

Train

One solution is to reuse only a part of the PTM.
Training Representation

Expansion

Partial Model

Requires enough target data.

The model may meet catastrophic forgetting when 
we want to facilitate the learned knowledge in the PM.
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Fine-Tune the Whole Model
▪ Initialize a network with transferred features from almost any number of layers 

can produce a boost to generalization performance after fine-tuning to a new 
dataset [Yosinski et al., NeurIPS’14].
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Tuning Partial Weights
▪ Tune the whole model: model may overfit the target task and forget the pre-

trained knowledge.
▪ Tune partial parameters: the ability of the model is limited.

Tune key components to balance the efficiency and ability. 

▪ Partial-K [Jia et al., ECCV’22]: Tune the top-k layers of a PTM.
▪ Scale and Shift [Lian et al., NeurIPS’22]: tune the scale and shift parameters of the PTM.
▪ BitFit [Ben-Zaken et al., ACL’22] : tune (a subset of) bias-terms of the PTM
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Tuning Partial Weights

▪ BitFit is a sparse-finetuning method where only the bias-terms of the model (or a 
subset of them) are being modified [Ben-Zaken et al., ACL’22]. 

▪ SSF only Scale and Shift the deep Features extracted by 
a pre-trained model to catch up with the performance 
of full finetuning [Lian et al., NeurIPS’22]. 
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Tuning Add-ins

Tune key components are efficiently learning incremental capabilities
while reducing forgetting of existing knowledge.

▪ Tune add-in-like parameters: adding extra structure and reusing the existed pre-
trained knowledge with the original parameters remain fixed.

▪ Adapter [Houlsby et al., ICML’19]: Add and tune the adapter module after multiheaded attention and two feed-forward layers.
▪ LoRA [Hu et al., ICLR’22]: Inject and tune trainable rank decomposition matrices into query and value projection heads.
▪ Prefix [Li et al., ACL’21]: Combine a small, continuous task-specific vector (prefix) as the token-level trainable inputs.

Adapter: Adapting the outputs 
within a Transformer block and 
adjust the output before concat.

LoRA: Constructing low-rank 
tuning matrices to make it both 
storage- and compute-efficient.

Prefix: Add the token-based 
adaptation items to harmonize 
inputs across variations.
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Tuning Add-ins

Visual prompt tuning (VPT) adds extra 
parameters in the input space while keeping 
the model backbone frozen [Jia et al., ECCV’22]. 

▪ Tune the PTM (ViT) with additional (visual or textual) prompts.

CLIP

▪     CoOp [Zhou et al., IJCV’22]:
    Context optimization to  prompt class words.

▪     CoCoOp [Zhou et al., CVPR’22]:
     Conditional Context optimization.
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Merging Multimodal Modules
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▪ Utilizing pre-trained image encoder and language model to build a multimodal LLM 
[Liu et al., NeurIPS’23]

https://arxiv.org/abs/2304.08485


Merging Multimodal Modules
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▪ Other multimodal LLMs can be built with other projectors  

OpenFlamingo combines a pretrained 
vision encoder and a language model using 
cross attention layers. [Awadalla et al., CoRR’23]. 

MiniGPT-4 only requires training the linear 
projection layer to align the visual features 
with the Vicuna. [Zhu et al., CoRR’23]. 
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BLIP-2 bridges the modality gap between 
PTMs with a lightweight Querying 
Transformer, which is pretrained in two 
stages. [Li et al., ICML’23]. 

CogVLM bridges the gap between the 
frozen pretrained language model and 
image encoder by a trainable visual expert 
module in the attention and FFN layers.. 
[Wang et al., NeurIPS‘24]. 

Merging Multimodal Modules
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▪ Other multimodal LLMs can be built with other projectors  
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Reuse PTM for optimization
▪ Reuse PTM to find a better path from the initialization to the optimal point.

Without PTM With PTM

Pre-Training Task Target Task

PTM Target Model

Align
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Model Reuse via Regularization
▪ Hypothesis Transfer Learning (HTL): matches the weights between the target and PTM 

[Kuzborskij and Orabona, ICML’13] [Kuzborskij and Orabona, MLJ’16]. Given 𝑔𝑔Θ, we learn 𝑓𝑓𝜃𝜃 via

min
𝑓𝑓𝜃𝜃

�
𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖 ∼𝒯𝒯 

ℓ 𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖|𝑔𝑔Θ ,𝑦𝑦𝑖𝑖 + Ω 𝜃𝜃,Θ

 Ω(�) measures the discrepancy between two sets of parameters, which could be 
implemented via different norms.

Regularize parameters with ℓ2 norm

Ω 𝜃𝜃,Θ = 𝜆𝜆 𝜃𝜃 − Θ 2
2

Layer-wise regularization for deep 
neural network.

Make prediction for the residual part.
If Δ = 𝜃𝜃 − Θ, then for a linear model

𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖|𝑔𝑔Θ = 𝑔𝑔Θ 𝒙𝒙𝑖𝑖 + Δ,𝒙𝒙𝑖𝑖
Ω 𝜃𝜃,Θ = 𝜆𝜆 Δ 2

2
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Model Reuse via Regularization
▪ L2-SP: consider the mixed norm, also the norm on the target parameter [Li et al., ICML’18]

Ω 𝜃𝜃,Θ = 𝜆𝜆 𝜃𝜃 − Θ 2
2 + 𝜆𝜆2 𝜃𝜃 2

2

▪ L2-SP-Fisher: use the estimated Fisher information 𝑭𝑭 to define the distance between 𝜃𝜃,Θ

Ω 𝜃𝜃,Θ = 𝜆𝜆 𝜃𝜃 − Θ ⊤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑭𝑭 𝜃𝜃 − Θ + 𝜆𝜆2 𝜃𝜃 2
2

▪ L1-SP: ℓ1-norm is used

Ω 𝜃𝜃,Θ = 𝜆𝜆 𝜃𝜃 − Θ 1
2 + 𝜆𝜆2 𝜃𝜃 2

2
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https://arxiv.org/abs/1802.01483


Why Hypothesis Transfer Helps?
▪ For the binary classification case with linear classifier [Kuzborskij and Orabona, MLJ’16], 

▪ For the multi-class case with linear classifier [Ye, Zhan, Jiang, Zhou, ICML’18][Zhao, Cai, Zhou, MLJ’20].
▪ Hypothesis transfer on deep neural network [Gouk, Hospedales, Pontil, ICLR’21].
▪ Other analysis [Aghbalou et al., ICML’23].
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Model Reuse via Feature Matching
▪ Minimize the discrepancy between the features generated by PTM and the target model:

min
𝑓𝑓𝜃𝜃

�
𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖 ∼𝒯𝒯 

ℓ 𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖|𝑔𝑔Θ ,𝑦𝑦𝑖𝑖 + Ω 𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑔𝑔Θ 𝑥𝑥𝑖𝑖

▪ 𝑓𝑓𝜃𝜃 and 𝑔𝑔Θ output the predictions (logit) or the middle layer features.

▪ DELTA [Li et al., ICLR’19]:
▪  Feature alignment 
with attention.

▪ BSS [Chen et al., NeurIPS’19]:
▪  Feature alignment based on 
corresponding angle.
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Knowledge Matching as New Objective
▪ Ω 𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑔𝑔Θ 𝑥𝑥𝑖𝑖  measures the discrepancy between predictions.

▪ Knowledge distillation [Hinton et al., CORR’15] match the PTM and the target model in the 

prediction space, i.e., the output predictions of both models should be similar. 

Ω 𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑔𝑔Θ 𝑥𝑥𝑖𝑖 = 𝐾𝐾𝐾𝐾 𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 /𝜏𝜏,𝑔𝑔Θ 𝑥𝑥𝑖𝑖 /𝜏𝜏
   The logit should be transformed with SoftMax operator.
   The temperature 𝜏𝜏 calibrates the predictions.
▪ Other kinds of divergence measure, or knowledge types are also considered [Gou et al., IJCV’21]. 
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Knowledge Matching as New Objective
▪ Match the relationships between instances [Park et al., CVPR’19] [Ye, Lu, Zhan,CVPR’20], prove 

to be powerful tools for achieving alignment.

The angle between pairwise instances are matched. The triplet or tuple-level comparisons are matched.
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PTM Helps Optimization
▪ PTMs can also influence the optimization process of the target model. The choices of different 

hyper-parameters such as learning rate, weight decay [Mahajan et al., CoRR’18] [Kornblith, Shlens, Le, 

CVPR’19], momentum [Li et al., ICLR’20] during the vanilla fine-tuning of the target model are explored.

Small momentum works better for fine-tuning on 
domains that are close to the source domain

Optimal hyperparameters for 
fine-tuning depend on both 
the target dataset and the 
similarity between the source 
domain and target domain.

Regularization that keeps 
models close to the initial 
model does not necessarily 
apply for “dissimilar” datasets.
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Outline
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▪Taxonomy of Model Adaptation

▪Adapt PTMs for target data preparation

▪Adapt PTMs for target model training

▪Adapt PTMs for target model inference

▪Other topics in model reuse

▪Conclusion
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Adapt PTMs for target model inference

40

Main idea: construct an embedding space using the PTM, resulting in more 
discriminative features. 

Merging models with Fisher-weighted 
averaging [Matena et al., NIPS’22].

Directly using the pre-trained features as the 
encoding for target task inference

https://arxiv.org/pdf/2111.09832.pdf
https://arxiv.org/pdf/2111.09832.pdf


PTM as Better Representations

▪Linear probing : freezing the backbone (PTM) and 
adjusting only the fully connected (FC) layers 
based on downstream task data. 

Frozen Backbone

…

Trainable FC 
Layer

▪The Nearest Class Mean (NCM) classifier assigns images to 
the class whose mean is closest. PTM could enhance this 
process by improving feature representation and metric 
learning [Mensink et al., TPAMI’13].
▪A powerful baseline method in few-shot learning [Wang et al., 

CoRR’19], class-imbalance learning [Kang et al., ICLR’20], and class-
incremental learning [Rebuffi et al., CVPR’17][Zhou et al., CoRR’23].
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PTM as Better Representations

▪ Head2Toe selects the most useful features 
from the entire network and trains a linear 
head on top [Evci et al., ICML’22]. 

▪ Visual Query Tuning (VQT) learns to 
select rather than adapt intermediate 
features [Tu et al., CVPR’23].
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PTM for Prediction Aggregation
▪ Logit ensemble and probability ensemble (based on activations).

Agg 𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖 ,𝑔𝑔𝛩𝛩 𝒙𝒙𝑖𝑖  
▪ Note: need to consider the calibration issue.

Apply Gaussian Discriminant Analysis together 
with the zero-shot classifier to the downstream 
classification of CLIP [Wang et al., ICLR’24].

Create a set of classifiers individually based on 
the same PTM. In inference, vote these classifier 
heads by adopting a set of temperatures [Wang et al.,
AAAI’23].
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Model Merge with Weight Average
▪ Average the weight of two homogeneous models.
▪ The size of the model does not increase in the inference stage.

Weighted average the weights Θ𝑘𝑘  
directly, without training process.

Due to the permutation symmetry of 
learned weights, an additional 
alignment should be made [Singh and 
Jaggi et al., NIPS’20] [Li et al., CORR’23].

Could be extended to model reuse from 
multiple PTMs.

𝑓𝑓𝜃𝜃 𝑔𝑔Θ
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Model Merge Helps Optimization
▪ WiSE-FT [Wortsman et al., CVPR’22]: weight interpolation after standard fine-tune. 
▪Θ is the initialization, 𝜃𝜃 is the fine-tuned weights on 𝒯𝒯, then we set

�𝜃𝜃 = 1 − 𝛼𝛼 Θ + 𝛼𝛼𝛼𝛼
Keep the zero-shot ability of a PTM after fine-tuned under distribution shift.

45

https://arxiv.org/pdf/2109.01903.pdf
https://arxiv.org/pdf/2109.01903.pdf
https://arxiv.org/pdf/2109.01903.pdf


Model Merge Helps Optimization
▪ Model Soup [Wortsman et al., ICML’22] introduced a technique that involves averaging the 

weights of multiple models fine-tuned from the PTM. 

The solution with the highest accuracy is often 
lies between fine-tuned models
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Model Merge
▪ Other strategies to merge PTMs.

Merging Models with Fisher-Weighted 
Averaging [Matena et al., NIPS’22].

RegMean: minimize the prediction differences 
between the merged model and the individual 
models, with closed solution [Jin et al., ICLR’23].
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Why Model Merging Helps?
▪ Linear Mode Connectivity (LMC): the minima obtained by gradient-based optimizer are not 

walled off in isolated valleys, and a direct linear path connecting two such independently 
trained networks usually always leaves a low-loss manifold [Garipov et al., NeurIPS’18].
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Model Fusion: Training-Free Ensemble
▪ Learn a mapping matrix to rectify the weights of different layers to address the model 

heterogeneity, e.g., OT-Fusion [Singh and Jaggi et al., NIPS’20] [Ye et al., TPAMI’21].

▪ “zip”: merge features within each model. Then partially zip the models up until a 
specified layer, naturally creating a multi-head model [Stoica et al., ICLR’24].

Interpolation between Model A and a permuted Model B lies outside the minima for both tasks. 
ZipIt! Finds a model that lies in a low loss basin for both.
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Heterogeneous Model Reuse

▪ When there exist differences between the pre-trained task and the target task, as well as their 
architectures, some model reuse approaches should be adapted accordingly.

𝑓𝑓𝜃𝜃 

𝑔𝑔Θ

Model
Reuse

Homogeneous

Heterogeneous

Alignment

Homogeneous 
Transformation

Weight 
Alignment

Prediction 
Alignment

Adaptive 
Architecture
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Homogeneous Data Transformation

Meta-
representation 

extractor

pre-training datasets

Meta-
representation 

extractor

Meta-
representation 

extractor

downstream dataset

Class1 Class2 Class3 …

(                     )

(                               )

(                               )
raw tabular data meta-representation

classification with 
meta-representation

▪ Transform all the datasets into the homogeneous form, so that the reduce the discrepancy 
between their models. For example, random projection on tabular data [Bonet et al., NeurIPSW’23].
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Homogeneous Data Transformation

class-A MR class-B MR class-C MR

Extract class-specific prototypes.

Calculate the distance to those prototypes, 
Sort and select the K smallest.

the instance is more likely 
to be class A

(HOC) 
border

(BWD) 
center

(HOC) 
center

(BWD) 
border

[Ye, Zhou, Zhan, NeurIPSW’23].
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Model Growth
▪ Reuse a smaller PTM for a larger target model.
▪ Net2Net [Chen et al., ICLR’16] expand the width of neural networks by duplicating neurons. 

Given the pre-trained weights Θ𝑙𝑙 ∈ ℝ𝑑𝑑×𝑑𝑑, the target weight is 𝜃𝜃𝑙𝑙 ∈ ℝ𝐷𝐷×𝐷𝐷, then

𝑓𝑓𝜃𝜃 

𝑔𝑔Θ

𝜃𝜃𝑙𝑙 = 𝑰𝑰 𝑺𝑺𝑙𝑙−1⊤ diag 𝑺𝑺𝑙𝑙−1𝟏𝟏 + −1Θ𝑙𝑙 𝑰𝑰 𝑺𝑺𝑙𝑙 ,

𝑺𝑺𝑙𝑙 ∈ {0,1}𝑑𝑑× 𝐷𝐷−𝑑𝑑 is a random selection matrix that indicates the 
column indices to be duplicated at the 𝑙𝑙-th layer.

▪ bert2BERT [Chen et al., ACL’22].
▪ Learning to Grow (LiGO) [Wang et al., ICLR’23] learns a linear mapping between 

two parameter spaces before expanding the model size. 
▪ Mango [Pan et al., NeurIPS’23]: consider the inter- and intra-interactions among 

the weights of both the pretrained and the target models.
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Reuse Adaptive Model
▪ Given input from heterogeneous tasks, we can either consider a dimension-invariant 

transformation or learn an adaptive model to fit heterogeneous tasks.
▪ Meta-learn a transformer and make prediction with its adaptation/in-context-learning ability.

FEAT [Ye et al., CVPR’20] [Hollmann et al., ICLR’23][Iwata, Kumagai, NeurIPS’20]

Heterogeneous classes: Heterogeneous features:
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Tuning Adaptive Partial Weights
▪ Making the tunable part adaptive given the input.
▪ FiLM layers influence neural network computation via 

feature-wise affine transformation based on conditioning 
information [Perez et al., AAAI’18]. 
▪ sc𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = ℎ1 𝒙𝒙𝑖𝑖 
▪𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝛽𝛽 = ℎ2 𝒙𝒙𝑖𝑖 
▪FILM 𝑭𝑭𝑖𝑖,𝑐𝑐 𝛾𝛾𝑖𝑖,𝑐𝑐 ,𝛽𝛽𝑖𝑖,𝑐𝑐 = 𝛾𝛾𝑖𝑖,𝑐𝑐 𝑭𝑭𝑖𝑖,𝑐𝑐+ 𝛽𝛽𝑖𝑖,𝑐𝑐

In few-shot learning: make the model adaptive given 
the support set [Oreshkin, Rodriguez, Lacoste, NeurIPS’18].

In neural ensemble, tune 
multiple models efficiently 
[Shin et al., NeurIPS’21].
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Regularization + Semantic Mapping
▪ When dealing with heterogeneous weight spaces due to the change of features, 

additional mapping and attention layers are applied to facilitate alignment.

OPID [Hou, Zhou, TPAMI’18]: compress important 
information of vanished features into functions 
of survived features, and then expand to include 
the augmented features.

ReForm [Ye et al., TPAMI’21]: constructs meta-
representation for features, which depicts the 
relationship between features in different 
stages. Then, an OT map learned in the meta-
space could be applied to the model space.

Ω 𝜃𝜃,Θ
= 𝜆𝜆 𝒯𝒯 𝜃𝜃 − Θ 2

2
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Semantic Mapping for Class Set Discrepancy
▪ When dealing with heterogeneous weight spaces due to the change of classes, the 

semantic mapping could be applied to their predictions.

ReForm [Ye et al., TPAMI’21]: the meta-
representation is constructed via the 
class center based on the feature 
extracted by PTM. Then apply the 
biased regularization.

Co-Tuning [You et al., NeurIPS’20]: 
discover the semantic mapping via 
the predictions of PTMs on the 
instances from the target task 
(among the source class set) and the 
target class labels of those instances.
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Generalized Knowledge Matching
▪ Apply a feature matching component to 

bridge the feature gap between target 
model and PTM [Wang, Ge, Wu, TPAMI’22].

The linear embedding layer also rotate the feature 
space and align the features of two models.

We can take advantage of relationship-based 
methods which do not depend on the feature 
dimension and magnitude.

▪ Generalized KD, where the student could have 
the same, different, or partially overlapped 
classes w.r.t. the teacher [Ye, Lu, Zhan, TPAMI’23].
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Reuse Multiple PTMs

Model Zoo
𝒯𝒯

▪ The importance of different PTMs 
are diverse.

▪ Transferability metric to weight 
different PTMs.

▪ Select one of them to keep the 
efficiency and ability.
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Knowledge Amalgamation

[Luo et al., IJCAI’19] [Shen et al., AAAI’19]

Features of all teachers are transformed 
into a common space and the student 
is enforced to imitate them all so as to 
amalgamate the intact knowledge.

A two-step strategy: learn the compact feature 
representations from teachers and then the network 
parameters in a layer-wise manner so as to build the 
student model.
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Zoo-Tuning
▪ Aggregate parameters from heterogeneous PTMs [Shu et al., ICML’21].

▪ With the learnable channel alignment layer and 
adaptive aggregation layer, Zoo-Tuning adaptively 
aggregates channel aligned pretrained parameters 
to derive the target model. 
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Knowledge Factorization
▪ Factorize task-agnostic (shared across multiple tasks) and task-specific (for a certain 

task) knowledge from the teachers [Yang, Ye, Wang, ECCV’22].

Given a pretrained teacher, KF 
decomposes it into several factor 
networks, each of which masters 
one specific knowledge factorized 
from the teacher, while remaining 
disentangled with respect to others.

▪ Structural Factorization: decompose the teacher into a set 
of factor networks. Each factor network comprises a shared 
common-knowledge network and a task-specific network.

▪ Representation Factorization disentangles the shared 
knowledge and task-level representations into statistically 
independent components.
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Reuse Multiple Models
▪ Prediction aggregation [Ye et al., CIKM’15], which post-fuses the multiple 

predictions from various PTMs.

𝒯𝒯

𝑔𝑔Θ1
1 𝒙𝒙𝑖𝑖

𝑔𝑔Θ3
3 𝒙𝒙𝑖𝑖

𝑔𝑔Θ2
2 𝒙𝒙𝑖𝑖

Reuse multiple multi-modal PTMs. Gather predictions 
into matrices 𝐴𝐴1, … ,𝐴𝐴𝑀𝑀 , the final predictions are 
obtained with the consist weight propagation among 
different modalities [Yang et al., IJCAI’17].
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Learning and Calibration
▪ Calibrate the prediction of multiple local models 

in Multi-Party Learning [Wu et al., ICML’19].

[Tang et al., IJCAI’23] extends the HMR 
paradigm which utilizes different types of 
specifications of local datasets in a different 
way, and aggregates the results.
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Outline
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▪Taxonomy of Model Adaptation

▪Adapt PTMs for target data preparation

▪Adapt PTMs for target model training

▪Adapt PTMs for target model inference

▪Other topics in model reuse

▪Conclusion



Model Reuse for Interpretability
▪ Reuse a strong model, which helps improve the generalization ability of a interpretable 

model such as decision tree [Zhou, Jiang., TKDE’04].

Learn a strong model such as NN.

Generate extra training examples.

Learn an interpretable model over the 
augmented dataset (twice learning).
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Reuse Cross-Metric Models
▪ Instead of optimizing domain-specific performance measures (e.g., accuracy, AUC, F1-

Score, NDCG, MAP) independently, the metric-specific models could be reused from a 
PTM learned based on the main metric.

CAPO [Li et al., TPAMI’13]: utilize the relatedness among multiple performance metrics, 
and implement the classifier in an additive form:

min
𝑓𝑓𝜃𝜃

�
𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖 ∼𝒯𝒯 

ℓ 𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖|𝑔𝑔Θ ,𝑦𝑦𝑖𝑖 + Ω 𝜃𝜃,Θ

𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖|𝑔𝑔Θ = �
𝑚𝑚=1

𝑀𝑀

𝛼𝛼𝑚𝑚𝑔𝑔Θ𝑚𝑚
𝑀𝑀 𝒙𝒙𝑖𝑖 + 𝒘𝒘⊤Φ 𝒙𝒙𝑖𝑖

▪ Adapt-Boost [Ding et al., NeurIPS’18] reuse models for different objectives in a boosting manner.
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Cross-Modal Reuse
▪ Reuse multi-modal models, so that the generalization ability of a certain branch (for one 

modal) could be improved in the inference stage.

FMR [Yang et al., AAAI’17]: transfer the ability 
from tabular to image modality. FMR 
probabilistically ”knocks down” specific 
blocks, which enables the target model to 
effectively memorize and retain valuable 
knowledge from the PTM.

Use the hidden layer representation of the source model 
to train the target depth model, which is superior to the 
approach using the limited data in target domain. In 
detail, the target hidden layer representation is 
improved by using it to reconstruct the source hidden-
layer representations [Luo et al., ICME’19].
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Example: Class-Incremental Learning
▪ Given a sequence of training tasks containing different classes, class-

incremental learning aims to build a unified classifier for all seen classes
Task 1 Task 3Task 2

Model

Test Set 1 Test Set 2

Train

Model

Train

Model

Test Set 3

Train

▪ In each training stage, the algorithms needs to reuse the current model and 
new dataset to incorporate new knowledge

Pre-Trained

Traditional CIL

PTM-based CIL

Randomly Initialized
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Example: Class-Incremental Learning
▪ When training from scratch, the previous model can be utilized to provide 

supervision signals to prevent forgetting

The importance of different parameters shall vary 
for different tasks. EWC builds regularization 
term by forcing importance parameters to stay 
unchanged [Kirkpatrick et al., PNAS’17].

Distilling logits to align the knowledge between 
old and new model [Li et al., ECCV’16].

Task 1 Task 2

KD

Training level: Distillation Training level: Regularization

min ℓ(𝑓𝑓(𝐱𝐱),𝑦𝑦) +
1
2 𝜆𝜆�

𝑘𝑘

Ω𝑘𝑘 𝜃𝜃𝑘𝑘𝑏𝑏−1 − 𝜃𝜃𝑘𝑘
2
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Example: Class-Incremental Learning
▪ When training with PTMs, extra models can serve as the generator for external 

knowledge and data.

Generating images of previous classes with stable 
diffusion for replay to prevent forgetting [Wu et al., 
CVPR’25].

Generating descriptions for related classes to 
foster cross-modal alignment [Zhou et al., ICCV’25].

Data level: Expert Knowledge Injection Data level: Data Generation
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Example: Class-Incremental Learning
▪ When reusing pre-trained models, generalizable features can be adopted by model 

expansion

Building a dual-branch network. The online 
learner is updated via CE loss, while the offline 
learner is updated via EMA. During inference, 
the prediction is achieved via logit ensemble 
[Gao et al., ICCV’23].

Aggregate the features of PTM and adapted 
model for stronger representations [Zhou et al., 
IJCV’24].

Inference level: Model Merge
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Inference level: Reuse Representation
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Discussion: Making PTMs Reusable

▪ Mimic what the model will 
meet in the deployment 
stage in the pre-training.

▪ Make the model reusable 
(be reused in a more 
efficient and effective 
manner) for unseen tasks.

Meta-Test
（unseen task）

Meta-Training
（seen task）

.

.

�
𝒮𝒮, 𝓠𝓠

�
𝒙𝒙,𝒚𝒚 ∼𝓠𝓠

ℓ(𝑔𝑔 𝒙𝒙;𝝓𝝓,𝓢𝓢 ,𝑦𝑦)min
𝝓𝝓

𝒮𝒮

𝒮𝒮

𝒬𝒬

𝒬𝒬

𝒮𝒮 𝒬𝒬

[Vinyals et al. NIPS’16] [Finn et al. ICML’17]
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Discussion: Use Model and Model Reuse
▪ Use a model: direct make 

inference with the model.

𝒯𝒯

ML 
Algorithm

Use the model

The PTM is not 
adapted for the 
target task.

▪ Reuse by ``using’’ the PTM: utilize the in-context-
learning ability of LLMs [Dong et al., CoRR’23].

 Transformer learn unseen models implicitly with 
demonstrations [Garg et al., NeurIPS’22]. 

 Transformer works in a similar way as gradient-descent 
optimizer implicitly [Akyürek et al., ICLR’23]. 

Taking the demonstration and a query as the input, large 
language models are responsible for making predictions
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Application Platform：Beimingwu
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Support the entire process including the submitting, 
usability testing, organization, identification, 
deployment and reuse of learnwares.

Learnware: unified unit
- Specify a unified learnware structure

Dock system architecture
- Design an integrated architecture

Key algorithms
- Implement baseline algorithms for each step

Infrastructure
- Engineering optimizations for computation 
and storage

Elements:

https://bmwu.cloud

https://bmwu.cloud/
https://bmwu.cloud/


How to solve a new machine learning task with learnware dock system?
Beimingwu: a recently developed learnware dock system for research platform 

# search learnwares 
learnware_ids = client.search_learnware(user_info) 

# load learnwares
learnware_list = client.load_learnware(learnware_ids)

# reuse and predict on user own task 
y_predict = Reuser(learnware_list).predict(X)

With the constant submission of learnwares and advancements in algorithms, the 
interfaces will be increasingly powerful.

Beimingwu provides unified 
interfaces to identify and deploy 
learnwares with just a few key 
lines of code. 

An example based on Beimingwu
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With unified interfaces and architecture, 
the capabilities of the system will improve 
continuously through the constant submission of 
learnwares and advancements in algorithms.

① Generate user info

- statistical and semantic specification for 
user task 

② Beimingwu identifies helpful learnwares

③ Load learnware locally

④ Reuse learnware on own data

Use learnware dock system to solve new tasks
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How to solve an arbitrary new task with Beimingwu
Beimingwu streamlines the model development through learnware paradigm

# generate statistical specification for task data
stat_spec = generate_stat_spec(data_type, X)
…
# search learnwares 
learnware_ids = client.search_learnware(user_info) 

# load learnwares
learnware_list = client.load_learnware(learnware_ids)

# reuse and predict on your task 
y_predict = Reuser(learnware_list).predict(X)

1. No need for extensive data

2. Minimal machine learning
expertise

3. Local deployment of diverse 
models

4. No leakage of original data

Beimingwu: A learnware dock system
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Conclusion
▪ Model reuse becomes an effective solution in various domains, such as for tabular data, 

visual, and language tasks.

▪ Model reuse methods can be categorized from various aspects
▪Homogeneous or heterogeneous
▪Reuse one-model or multiple models
▪Reuse from data-level, training-level, or inference-level.
The ideas to reuse PTMs from multiple fields could be shared.

▪ To further boost the ability of model reuse, one important step is to identify which one 
or more PTMs to reuse from the model zoo.
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Thank You

Da-Wei Zhou       周大蔚
Nanjing University


	Model Reuse in the LLM Era: �Leveraging Pre-Trained Resources with Classical and Modern Approaches
	PTM Adaptation
	Taxonomy of Model Reuse
	Outline
	Taxonomy of Model Reuse
	Adapt PTMs for target data preparation
	PTM for Data Denoise
	PTM for Data Selection
	PTM for Richer Labels
	PTM for Data Augmentation
	PTM for Data Augmentation
	PTM for Data Augmentation
	PTM for Expert Knowledge
	PTM for Expert Knowledge
	PTM for Expert Knowledge Injection
	PTM for Expert Knowledge
	PTM for Expert Knowledge
	PTM for Expert Knowledge
	Outline
	Taxonomy of Model Reuse
	Adapt PTMs for target model training
	Fine-Tune the Whole Model
	Tuning Partial Weights
	Tuning Partial Weights
	Tuning Add-ins
	Tuning Add-ins
	Merging Multimodal Modules
	Merging Multimodal Modules
	Merging Multimodal Modules
	Reuse PTM for optimization
	Model Reuse via Regularization
	Model Reuse via Regularization
	Why Hypothesis Transfer Helps?
	Model Reuse via Feature Matching
	Knowledge Matching as New Objective
	Knowledge Matching as New Objective
	PTM Helps Optimization
	Outline
	Taxonomy of Model Reuse
	Adapt PTMs for target model inference
	PTM as Better Representations
	PTM as Better Representations
	PTM for Prediction Aggregation
	Model Merge with Weight Average
	Model Merge Helps Optimization
	Model Merge Helps Optimization
	Model Merge
	Why Model Merging Helps?
	Model Fusion: Training-Free Ensemble
	Heterogeneous Model Reuse
	Homogeneous Data Transformation
	Homogeneous Data Transformation
	Model Growth
	Reuse Adaptive Model
	Tuning Adaptive Partial Weights
	Regularization + Semantic Mapping
	Semantic Mapping for Class Set Discrepancy
	Generalized Knowledge Matching
	Reuse Multiple PTMs
	Knowledge Amalgamation
	Zoo-Tuning
	Knowledge Factorization
	Reuse Multiple Models
	Learning and Calibration
	Outline
	Model Reuse for Interpretability
	Reuse Cross-Metric Models
	Cross-Modal Reuse
	Example: Class-Incremental Learning
	Example: Class-Incremental Learning
	Example: Class-Incremental Learning
	Example: Class-Incremental Learning
	Discussion: Making PTMs Reusable
	Discussion: Use Model and Model Reuse
	Application Platform：Beimingwu
	An example based on Beimingwu
	Use learnware dock system to solve new tasks
	Beimingwu: A learnware dock system
	Conclusion
	Thank You

