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Introduction



Machine Learning Applications
Machine learning has been applied in various fields successfully.

Image recognition 
and detection

Vision-language 
understanding

Image/text 
generation

Q: Could you depict 
the picture?

A: The image shows a 
white motor yacht crui-
sing on the water with a 
city skyline in the back
ground. 

Tiny potato kings: wear-
ing intricate crowns,

kingdom made of potato
farms and villages.

seated on grand thrones,
overlooking a vast



Classical learning paradigm
▪ Given a task 𝒯𝒯 = 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1

𝑁𝑁

▪ The model 𝑓𝑓𝜃𝜃:𝒳𝒳 → 𝒴𝒴, contains the architecture 𝑓𝑓 and weights 
𝜃𝜃 is learned via 𝑓𝑓𝜃𝜃 = 𝒜𝒜 𝜃𝜃0, 𝑓𝑓 | 𝒟𝒟 , e.g.,

min
𝑓𝑓𝜃𝜃

�
𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖 ∼𝒯𝒯 

ℓ 𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖

Learn the model from scratch. For example, with gradient-based 
optimizer, we update 𝜃𝜃 from initialization 𝜃𝜃0 with gradients ∇𝜃𝜃ℓ.

Machine Learning Paradigm

Audio

Image

Traffic

Code

Text

Video

Industry

Agriculture
ML Algorithm

We need to carefully 
determine which data to 
use, the model architecture, 
training objective, and 
inference strategies, etc.

Document 
Understanding

Classification 
and Regression

Audio 
Analysis

Reinforcement 
Learning

Speech-to-TextImage 
Recognition

Graph 
Learning

Language

𝒯𝒯



Machine Learning Pre-trained Models

ML Algorithm Output ModelInput Data

A Pre-Trained Model (PTM) is a machine learning 
model (usually well-trained) based on a certain dataset.

Neural NetworkLinear model Decision Tree

These PTMs encapsulate valuable inductive 
biases beneficial for downstream tasks.

AudioTransportation Image Code Video AgricultureIndustry



Machine Learning Pre-trained Models

Multi-modal: image2text, text2image, …

Types of PTMs

Vision: image classification, detection, …

Language: text generation, Translation, …

Tabular: classification, regression, …

Audio: speech recognition, text2speech, …

RL: robotics, …

https://huggingface.co/ 

1.3M+ PTMs

https://modelzoo.co/ 

https://www.kaggle.com/models 

…….

https://huggingface.co/
https://modelzoo.co/
https://www.kaggle.com/models


Learning Paradigm

ML Algorithm Output ModelInput Data

Model-Centric Data-Centric

Next stepimprove performance by 
changing the model

improve performance by 
changing the data

https://www.datacentricai.org/neurips21/; https://dmlr.ai/ 

https://www.datacentricai.org/neurips21/
https://www.datacentricai.org/neurips21/
https://www.datacentricai.org/neurips21/
https://dmlr.ai/


Learning from Data → Learning from Data and Pre-trained Models
data-centric

pre-trained-model-centric

ML Algorithm Output ModelInput Data

Reuse PTMs



from model_reuse_lib import Client 

client = Client() 

target_model = client.fit(training_data=(train_X, train_Y), model_zoo_path=zip_path)

pred_y = target_model.predict(test_x)

Possible Usage
Incorporate a set of PTMs into the machine learning process.

…
Expert-level Ability Few-Shot Training Avoid Forgetting



Knowledge Aggregation, 𝐴𝐴 + 𝐵𝐵

Advantages and Goals of Model Reuse

▪ Make the target model 𝑓𝑓 more discriminative
▪ The target task could be unlabeled/few-shot

▪ To improve the target model
▪ Make a model capable of various tasks

𝒯𝒯1

𝒯𝒯2

𝒯𝒯1

𝒯𝒯2 𝒯𝒯1

Knowledge Transfer, 𝐴𝐴 → 𝐵𝐵



Possible Reuse Paradigms

• By building on existing models, reuse accelerates training, lowers computational and data costs, and mitigates 
catastrophic forgetting in dynamic or continually evolving environments. 

• With well-designed reuse strategies, knowledge from these PTMs can be efficiently extracted and 
extended beyond their original scope, facilitating numerous applications.

Reuse a single (given) PTM



Different from the common neural scaling law (the performance, training data, and 
model size generally should follow a power law), the performance of a model drops 
significantly in the data scarcity case [Wang, Panda, Wang, ICML’23].

The common power law is broken once 
entering the data scarcity regime.

By reusing PTM, the power law is 
reproduced under the data scarcity regime.

Reuse PTMs Instead of Learning from Scratch

https://openreview.net/forum?id=iXYnIz4RRx


Possible Reuse Paradigms

• By building on existing models, reuse accelerates training, lowers computational and data costs, and mitigates 
catastrophic forgetting in dynamic or continually evolving environments. 

• With well-designed reuse strategies, knowledge from these PTMs can be efficiently extracted and 
extended beyond their original scope, facilitating numerous applications.

Reuse a single (given) PTM Reuse PTMs from a model zoo

0.5

0.3

0.2

Given a fixed set of PTMs 𝒢𝒢 =
𝑔𝑔𝚯𝚯1
1 ,𝑔𝑔𝚯𝚯2

2 , … ,𝑔𝑔𝚯𝚯𝑀𝑀
𝑀𝑀 , design a model reuse 

algorithm 𝒜𝒜′ such that 
𝑓𝑓𝜃𝜃 = 𝒜𝒜′ 𝜃𝜃0, 𝑓𝑓 | 𝒯𝒯;𝒢𝒢

For example, 

min
𝑓𝑓𝜃𝜃

�
𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖 ∼𝒯𝒯 

ℓ 𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖| 𝑔𝑔𝚯𝚯1
1 ,𝑔𝑔𝚯𝚯2

2 , … ,𝑔𝑔𝚯𝚯𝑀𝑀
𝑀𝑀 ,𝑦𝑦𝑖𝑖



Use Foundation Models?
Why not utilize one foundation model for different tasks directly?

Inverse scaling law indicates larger 
model may not help in some cases.

[Wei et al., EMNLP’23]

There exist ability divergence 
among foundation models.

[Chen et al., CoRR’23]

One foundation model cannot 
deal with different tasks.

[Grinsztajn, Oyallon, 
Varoquaux. NeurIPS’22]

Summary statistics for all 
176 tabular datasets. 

https://arxiv.org/abs/2211.02011
https://arxiv.org/abs/2211.02011
https://arxiv.org/abs/2211.02011
https://arxiv.org/abs/2211.02011
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815


PTM Selection PTM Adaptation

How to Reuse PTMs Effectively?



PTM Selection PTM Adaptation

PTM Selection and Adaptation

PTM Zoo

𝒯𝒯1

𝒯𝒯2

[Zhou, FCS’16]

https://openreview.net/forum?id=iXYnIz4RRx


PTM Selection

18

Target Tasks

Pre-trained Models

𝒯𝒯1 𝒯𝒯2 𝒯𝒯3



PTM Selection

19

Target Tasks

𝒯𝒯1 𝒯𝒯2 𝒯𝒯3

Pre-trained Models

85% 73%93%Fine-tuned performance:



PTM Selection

20

Target Tasks

Pre-trained Model Selection
selecting suitable pre-trained models for target tasks

𝒯𝒯1 𝒯𝒯2 𝒯𝒯3



PTM Adaptation

21

Target Tasks

Adapt selected PTMs towards the target task

𝒯𝒯1 𝒯𝒯2 𝒯𝒯3

𝒯𝒯1
𝒯𝒯2

𝒯𝒯3

Across various domains, e.g., tabular data 
[Kuzborskij and Orabona, ICML’13], image [Zhou et al., 
IJCV’22], texts [He et al., ICLR’22], …

Across various tasks, e.g., zero/few-shot learning 
[Radford et al., ICML’21], continual learning [Zhou et al., 
IJCAI’24], …

Select “most suitable” PTMs first, and 
then apply the adaptation scheme to 

improve the joint performance



PTM Adaptation for Tabular Data
Heterogeneity in Attribute

𝑓𝑓1 𝑓𝑓2𝑓𝑓3 𝑓𝑓4 𝑓𝑓1′𝑓𝑓2′ 𝑓𝑓3′𝑌𝑌 𝑌𝑌′

0

1
1

0
Binary-class Multi-class

𝑁𝑁 𝑁𝑁′

0

1
3

2

Heterogeneity in Class Space

Reuse data-specific 
Learnable Parameters 

+

Reuse the pre-trained classification/regression model on one or more tabular datasets to a target 
tabular dataset [Kuzborskij and Orabona, ICML’13][Ye et al., ICML’18][Zhu et al., ICML’23][Zhou et al., CoRR’23].

https://proceedings.mlr.press/v28/kuzborskij13.html
https://proceedings.mlr.press/v28/kuzborskij13.html
https://proceedings.mlr.press/v28/kuzborskij13.html
https://proceedings.mlr.press/v80/ye2018c/ye2018c.pdf
https://proceedings.mlr.press/v80/ye2018c/ye2018c.pdf
https://proceedings.mlr.press/v80/ye2018c/ye2018c.pdf
https://arxiv.org/abs/2305.06090
https://arxiv.org/abs/2305.06090
https://arxiv.org/abs/2305.06090
https://arxiv.org/abs/2305.06090
https://arxiv.org/abs/2310.15149
https://arxiv.org/abs/2310.15149
https://arxiv.org/abs/2310.15149
https://arxiv.org/abs/2310.15149


PTM Adaptation for Vision and NLP Tasks
Image Classification Object Detection

[Lian et al., NeurIPS’22]

Machine Translation

[He et al., ICLR’22]

Text summarization

[Chen et al., ICLR’23]

Text Summarization

[Li et al., ACL’21]

https://arxiv.org/abs/2210.08823
https://arxiv.org/abs/2210.08823
https://arxiv.org/abs/2210.08823
https://arxiv.org/abs/2210.08823
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2205.08534
https://arxiv.org/abs/2205.08534
https://arxiv.org/abs/2205.08534
https://arxiv.org/abs/2205.08534
https://arxiv.org/abs/2205.08534
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190


PTM Adaptation for Zero/Few-Shot Learning

Reuse a PTM, and construct a classifier on the 
target task even with zero/few training data.

Zero-Shot Learning

Few-Shot Learning

Train Set Test Set

The classes in train set
and test sets are
nonoverlapping.
The task needs side
information
(attributes).

The classes in meta-
training and meta-test
stage are nonoverlapping.
Learning new classes
with few-shot data in
meta-test stage.

Constructs the 
adapter via a key-
value cache model 
from the few-shot
data [Zhang et al.,
ECCV’22].

Adapt the text 
encoder and keep 
the zero-shot ability 
of a VLM [Zhou et al.,
IJCV’22].

PTM for Zero-Shot/Few-Shot Learning

https://arxiv.org/abs/2207.09519
https://arxiv.org/abs/2207.09519
https://arxiv.org/abs/2207.09519
https://arxiv.org/abs/2207.09519
https://arxiv.org/abs/2109.01134
https://arxiv.org/abs/2109.01134
https://arxiv.org/abs/2109.01134
https://arxiv.org/abs/2109.01134


PTM Adaptation for Continual Learning
 Continual Learning (a.k.a. incremental 

learning/lifelong learning) refers to the 
scenario where the model needs to be 
continually updated with new data. 

 Data comes in the stream format, which 
cannot be held for storage or privacy 
issues [Chen, Liu, Lifelong Machine Learning, 2018] 

[Ven, Tuytelaars, Tolias, NMI’22].

Task 1 Task 3Task 2

Model

Test Set 1 Test Set 2

Train

Model

Train

Model

Test Set 3

Train

Reuse the old model given the data from the new 
task, without fully access to the data from old 
classes [Zhou et al. IJCAI’24][Zhou et al., TPAMI’25].

https://www2.cs.uic.edu/%7Eliub/lifelong-learning/Chen%20and%20Liu_Lifelong%20Machine%20Learning,%20Second%20Edition.pdf
https://www2.cs.uic.edu/%7Eliub/lifelong-learning/Chen%20and%20Liu_Lifelong%20Machine%20Learning,%20Second%20Edition.pdf
https://www2.cs.uic.edu/%7Eliub/lifelong-learning/Chen%20and%20Liu_Lifelong%20Machine%20Learning,%20Second%20Edition.pdf
https://www2.cs.uic.edu/%7Eliub/lifelong-learning/Chen%20and%20Liu_Lifelong%20Machine%20Learning,%20Second%20Edition.pdf
https://www2.cs.uic.edu/%7Eliub/lifelong-learning/Chen%20and%20Liu_Lifelong%20Machine%20Learning,%20Second%20Edition.pdf
https://www2.cs.uic.edu/%7Eliub/lifelong-learning/Chen%20and%20Liu_Lifelong%20Machine%20Learning,%20Second%20Edition.pdf
https://www.nature.com/articles/s42256-022-00568-3
https://www.nature.com/articles/s42256-022-00568-3
https://www.nature.com/articles/s42256-022-00568-3
https://www.nature.com/articles/s42256-022-00568-3
https://www.nature.com/articles/s42256-022-00568-3
https://www.nature.com/articles/s42256-022-00568-3
https://arxiv.org/abs/2401.16386
https://arxiv.org/abs/2401.16386


PTM Adaptation for Large Language Models

[Liu et al., NeurIPS’23] [Chen et al., NeurIPS’23]

[Li et al., ICML’22] [Zhou et al., ICLR’23]

https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910


A Short Summary of Model Reuse

Typical Machine
Learning Process

Learning via
Model Reuse

Learning 
Algorithm

Textual Model

Visual Model

Model Zoo

Specification - 
Model

Selection

Target Data
Adaptation

Target 
Data

Management

Text data

Image data



A single method

or (selective) ensemble

Next-generation of 
model

LLMsEnsemble of PTMs

Machine learning evolves in cycles—from a single 
model, to (selective) ensembles, to a stronger 
next-generation model, and back to ensembles of 
such models. 
Model reuse can be seen as an efficient, 
structured form of ensembling existing models to 
extend capabilities without retraining from scratch.

The Intuition



Challenges



 Unify fragmented research efforts across different fields
As model reuse becomes a natural choice in various applications, a holistic and task-agnostic 
perspective is needed. Establishing a big-picture view of model reuse can bridge the gaps 
between specialized subfields and promote broader applicability.

 Integrating model reuse across both small and large PTMs
With the emergence of large PTMs such as foundation models, reusing such models involves 
both shared principles and diverse implementations. Integrating model reuse strategies can 
help connect diverse methodologies and inspire the design of novel model reuse strategies.

Challenges



Model Routing Model Collaboration Model Reassembly

“Synonyms” in PTM Selection

Model Selection Model Recommendation Transferability Estimation

[Matikainen et al., CVPR’12] [Ding et al., CoRR’24]

[Feng et al., CoRR’25][Hu et al., CORR’24] [Yang et al., NeurIPS’22]

[Raschka et al., CoRR’18]

https://www.ri.cmu.edu/publications/model-recommendation-for-action-recognition/
https://www.ri.cmu.edu/publications/model-recommendation-for-action-recognition/
https://www.ri.cmu.edu/publications/model-recommendation-for-action-recognition/
https://www.ri.cmu.edu/publications/model-recommendation-for-action-recognition/
https://arxiv.org/abs/2402.15231
https://arxiv.org/abs/2402.15231
https://arxiv.org/abs/2402.15231
https://arxiv.org/abs/2402.15231
https://arxiv.org/abs/2502.04506
https://arxiv.org/abs/2403.12031
https://arxiv.org/abs/2210.17409
https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1811.12808


“Synonyms” in PTM Adaptation

HEFT Distillation Model Weights as Modalities

Source-free DA Hypothesis Transfer Model Reprogramming

[Liang, Hu, Feng. ICML’20] [Kuzborskij & Orabona, ICML’13] 

min
𝑓𝑓𝜃𝜃

�
𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖 ∼𝒯𝒯 

ℓ 𝑓𝑓𝜃𝜃 𝒙𝒙𝑖𝑖|𝑔𝑔Θ ,𝑦𝑦𝑖𝑖

+𝜆𝜆 𝜃𝜃 − Θ 2
2

[Jia et al., ECCV’22] [Hinton et al., CoRR’15]

[Chen, AAAI’22]

[Schürholt et al., NeurIPS’21]

https://proceedings.mlr.press/v119/liang20a/liang20a.pdf
https://proceedings.mlr.press/v119/liang20a/liang20a.pdf
https://proceedings.mlr.press/v119/liang20a/liang20a.pdf
https://proceedings.mlr.press/v28/kuzborskij13.pdf
https://proceedings.mlr.press/v28/kuzborskij13.pdf
https://proceedings.mlr.press/v28/kuzborskij13.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930696.pdf
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2202.10629
https://arxiv.org/pdf/2110.15288
https://arxiv.org/pdf/2110.15288
https://arxiv.org/pdf/2110.15288


 Unify fragmented research efforts across different fields
As model reuse becomes a natural choice in various applications, a holistic and task-agnostic 
perspective is needed. Establishing a big-picture view of model reuse can bridge the gaps 
between specialized subfields and promote broader applicability.

 Integrating model reuse across both small and large PTMs
With the emergence of large PTMs such as foundation models, reusing such models involves 
both shared principles and diverse implementations. Integrating model reuse strategies can 
help connect diverse methodologies and inspire the design of novel model reuse strategies.

Challenges



Small and Large PTMs

The emergence of large PTMs has significantly 
impacted the model reuse workflow, as 
computational costs have become a crucial factor, 
and there are diverse strategies for extracting 
expert knowledge from these models. 

There is no strict boundary between small and large PTMs. 



Evolving of the PTM’s Ability

Could be applied to new 
instances from a task

Could be applied to new 
tasks with slight adaptation

Could be applied to new 
tasks directly

Linear model

Decision Tree

[Donahue et al., ICML’14] [Brown et al., NeurIPS’20]

https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1310.1531
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From Classical PTMs to Foundation PTMs

Different (foundation) PTMs with enhanced capabilities.
Decouple the “selection-adaptation” phases of PTM reuse.

w/ an explicit adaptation phase

𝒯𝒯1 𝒯𝒯2

There is heterogeneity between tasks (models)

Model 
Adaptation

w/ zero-shot generalization ability

𝒯𝒯1 𝒯𝒯2
Direct 

Generalization

There is heterogeneity between tasks (models)

directly applied to downstream tasks



37

Models with Strong Generalization Ability

This tutorial connects the reuse of both types of PTMs, highlighting commonalities 
and differences to provide deeper insights into model reuse methodologies.

Image-Text Multimodal PTM

[Radford et al., ICML’21] 

Time Series Forecasting PTM

[Ansari et al., TMLR’24] 

Language Generation PTM

[Brown et al., NeurIPS’20] 

Zero-Shot PTMs also demonstrate diverse ability across domains.



Survey on Model Reuse

Da-Wei Zhou, Han-Jia Ye. A Unifying Perspective on Model Reuse: From Small to Large Pre-Trained Models. IJCAI 2025.



Part 1: PTM Selection



PTM Selection

40

Target Tasks

𝒯𝒯1 𝒯𝒯2 𝒯𝒯3

Pre-trained Models

85% 73%93%

Fine-tuned performance

Target Tasks

selecting suitable pre-trained models for target tasks

𝒯𝒯1 𝒯𝒯2 𝒯𝒯3
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Previous Methods

To select on 𝑀𝑀 pre-trained models

   1 task, but 𝑴𝑴 forwards and backwards

PTM Selection
The vanilla strategy

…

Forward and backward each 
Pre-trained Model

Some criterion



Select PTMs Efficiently



Taxonomy of PTM Selection

Based on how to calculate the matching degree, there are three main types of methods

The target of model selection is to choose one or multiple related PTMs from the model 
zoo that are suitable for the related dataset. This is a typical retrieval process, where the 
core problem is to rank all models in the model zoo correctly. 

Learning-based methods directly learn the similarity between data and models. 

Semantic/rule-based methods

Metric-based methods

Learning-based methods 

Semantic/rule-based methods are designed to utilize the semantic information (e.g., natural 
language descriptions) or manually designed rules to find related models. 

Metric-based methods rely on defining the matching degree between the model’s output and the 
corresponding dataset.



Semantic/Rule-Based Methods

Task Application Structure

Classification NLP LSTM

Classification Vision CNN

Model Zoo with Specification
Regression Tabular Linear

My task is to classify the 
images of birds and dogs.

Retrieval

This semantic information is commonly represented by natural languages, expressing the 
capability of models and the upstream training data. 

Main idea: directly describe the task or define the rule of model selection



Semantic/Rule-Based Methods
PTMs in the model zoo are accompanied by descriptions (known as “semantic 
specification” or “statistical specification”). When facing a new task, the users are only 
required to describe their requirements as a new query and search within the model zoo.

The semantic specification contains 
descriptive information related to the 
model, including the target task (e.g., 
classification or regression), the kind of 
machine learning applications (e.g., natural 
language processing or image 
recognition), the model structure (e.g., 
SVM, CNN, or Decision Tree), etc. 

Image recognition PTM

semantic specification

= “The model is pre-trained 
on xxx datasets, the 
architecture is xxx”

Zhi-Hua Zhou, Zhi-Hao Tan. Learnware: small models do big. Science China Information Sciences. 2024.

statistical specification

Image recognition PTM

=  statistics of the datasets 
where the PTM is pre-trained



Taskonomy proposes a fully computational approach to discover and model the 
underlying structure of the space of visual tasks. 

Semantic/Rule-Based Methods

Amir Zamir et al., Taskonomy: Disentangling Task Transfer Learning. CVPR 2018.

Reuse the related source encoder based on the constructed Taskonomy. Attach a small, shallow transfer 
network on top of the frozen source encoder.



Semantic/Rule-Based Methods

• Task Planning: Using GPT to analyze the 
intention 

• Model Selection: Ask GPT to select the most 
suitable model on HuggingFace

• Task Execution: Invoke and execute selected 
models

• Response Generation: Using GPT to integrate 
predictions of all models

Yongliang Shen, et al. HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face. NeurIPS 2024.

HuggingGPT utilizes GPT to manage millions of 
models on Hugging-Face. Natural language is 
utilized as the interface to align all models. 
HuggingGPT involves four core steps:



Statistical Specification
Use RKME to generate statistical specification on the datasets where the PTM is pre-
trained. RKME guarantees the privacy issue and helps the selection of the PTM in the 
deployment stage.

Xi-Zhu Wu, Wenkai Xu, Song Liu, Zhi-Hua Zhou. Model Reuse with Reduced Kernel Mean Embedding Specification. TKDE. 2023.
Peng Tan, Zhi-Hao Tan, Yuan Jiang, Zhi-Hua Zhou. Handling Learnwares Developed from Heterogeneous Feature Spaces without Auxiliary Data. IJCAI 2023.

Jian-Dong Liu, Zhi-Hao Tan, Zhi-Hua Zhou. Towards Making Learnware Specification and Market Evolvable. AAAI 2024.

upload phase: model specification construction deploy phase: model selection based on specification

choose the model with minimum kernel-space distance



Discussion: Semantic/Rule-Based Methods
Task Application Structure

Classification NLP LSTM

Classification Vision CNN

Model Zoo with Specification
Regression Tabular Linear

My task is to classify the 
images of birds and dogs.

Retrieval

• Can be easily adapted to various 
domains and tasks by simply tagging 
models with appropriate semantic labels. 

• This flexibility makes them suitable for 
dynamic environments where new types 
of tasks frequently emerge. 

• The effectiveness heavily relies on the 
accuracy and comprehensiveness of the 
semantic specifications provided. 
Inaccurate or vague descriptions can lead 
to poor performance. 

• Manual semantic tagging becomes 
impractical as the number of models grows. 



Metric-Based Methods
Main idea: define the metric to represent the fitness between models and datasets. Also known as 
“transferability estimation”.

Yuhe Ding et al., Which Model to Transfer? A Survey on Transferability Estimation. CoRR 2024.
Yihao Xue et al., A Review on Transferability Estimation in Deep Transfer Learning. TAI 2024.

LEEP [Nguyen et al., ICML’20], LogME [You et al. 

ICML’21], GBC [Pándy  et al. CVPR’22], etc.

Reduce the burden of multiple 
backwards to one or more forwards.



H-Score
H-score estimates the transferability of learned representations from a source task to a 
target task. The score characterizes the discriminative power of the features for the target labels.

Yajie Bao et al., An Information-Theoretic Approach to Transferability in Task Transfer Learning. ICIP 2019.

target data
(𝑥𝑥 , 𝑦𝑦)

PTM ℎ
ℎ(𝑥𝑥)  =  𝑤𝑤⊤𝜙𝜙(𝑥𝑥)

extracted features 𝜙𝜙(𝑥𝑥)

𝜙𝜙

ℋ 𝜙𝜙 = tr cov 𝜙𝜙 𝑥𝑥 −1cov E𝑝𝑝 𝑥𝑥∣𝑦𝑦 𝜙𝜙 𝑥𝑥 ∣ 𝑦𝑦

inter-class feature varianceregularization of global 
feature variance 

• If the features have large distances among 
classes, meanwhile be similar within the 
same class, then 𝜙𝜙 preserves classification 
information.

• Directly utilize 𝜙𝜙 in calculation, thus H-
score also works for unsupervised PTMs.



H-Score
H-score estimates the transferability of learned representations from a source task to a 
target task. The score characterizes the discriminative power of the features for the target labels.

target data
(𝑥𝑥 , 𝑦𝑦)

PTM ℎ
ℎ(𝑥𝑥)  =  𝑤𝑤⊤𝜙𝜙(𝑥𝑥)

extracted features 𝜙𝜙(𝑥𝑥)

𝜙𝜙

The intra-class feature variance needs not to be small.

The re-trained prediction head can handle this.



ℎ

NCE
Negative conditional entropy (NCE) between label sequences of source and target tasks 
reflects the information required to predict labels of one task based on the knowledge of 
another, thereby providing an estimate of task transferability and hardness. 

Anh T. Tran, Cuong V. Nguyen, Tal Hassner. Transferability and Hardness of Supervised Classification Tasks. ICCV 2019.

target data
(𝑥𝑥 , 𝑦𝑦)

PTM ℎ
ℎ(𝑥𝑥)  =  𝑤𝑤⊤𝜙𝜙(𝑥𝑥)

bins 𝑧𝑧𝑘𝑘  of source model classes

extracted source model 
prediction ℎ(𝑥𝑥)

indistinguishable 
instances

need not in the same 
source class

• If the purity of the source model classes is high, 
which indicates that the features are 
sufficiently distinguishable, then 𝜙𝜙 preserves 
classify information.

• Also measures the mutual information 
between 𝑦𝑦 and 𝑧𝑧 since 𝐼𝐼 𝑦𝑦 𝑧𝑧 = 𝐻𝐻 𝑦𝑦 − 𝐻𝐻 𝑦𝑦 ∣ 𝑧𝑧
and 𝐻𝐻 𝑦𝑦  isn’t affected by the source model.

𝑁𝑁𝑁𝑁𝑁𝑁 ℎ = −𝐻𝐻 𝑦𝑦 ∣ 𝑧𝑧 = − �
𝑦𝑦∈𝒴𝒴,𝑧𝑧∈𝒵𝒵

𝑝̂𝑝 𝑦𝑦, 𝑧𝑧 log 𝑝̂𝑝 𝑦𝑦 ∣ 𝑧𝑧

the purity of source class bin 𝑧𝑧



ℎ

bins 𝑧𝑧𝑘𝑘  of source model classes

LEEP
Log Expected Empirical Prediction (LEEP) can be treated as a soft version of NCE, which utilize 
source prediction probabilities instead of hard labels.

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau. LEEP: A New Measure to Evaluate Transferability of Learned Representations. ICML 2020.

target data
(𝑥𝑥 , 𝑦𝑦)

PTM ℎ
ℎ(𝑥𝑥)  =  𝑤𝑤⊤𝜙𝜙(𝑥𝑥)

ℎ𝑧𝑧1 (𝑥𝑥) = 0.7,ℎ𝑧𝑧2 (𝑥𝑥) = 0.2,ℎ𝑧𝑧4 (𝑥𝑥) = 0.1

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ℎ =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

log �
𝑧𝑧∈𝒵𝒵

𝑝̂𝑝 𝑦𝑦𝑖𝑖 ∣ 𝑧𝑧 𝑝𝑝 𝑧𝑧 ∣ 𝑥𝑥𝑖𝑖

soft source label prediction

the purity of
source class bin 𝑧𝑧

• The metric is based on the alignment of the 
model’s predictions with the target task’s 
requirements

• The soft probabilities may contain information of 
prediction confidence. The lower the confidence, 
the worse the transferability.

𝑁𝑁𝑁𝑁𝑁𝑁 ℎ = −𝐻𝐻 𝑦𝑦 ∣ 𝑧𝑧 = − �
𝑦𝑦∈𝒴𝒴,𝑧𝑧∈𝒵𝒵

𝑝̂𝑝 𝑦𝑦, 𝑧𝑧 log 𝑝̂𝑝 𝑦𝑦 ∣ 𝑧𝑧

the purity of source class bin 𝑧𝑧



LogME
LogME (logarithm of maximum evidence) measure correlation between features and 
outputs.  

Kaichao You, Yong Liu, Jianmin Wang, Mingsheng Long. LogME: Practical Assessment of Pre-trained Models for Transfer Learning. ICML 2021.

• Need to solve an optimization problem on target 
data. The computation cost is higher.

• Share the similar principle of H-score. Introducing 
the prior distribution parameters can improve 
generalization.

• Work for both supervised and unsupervised 
PTMs. Restrict to be applied on target tasks with 
real-valued output space.

• 𝐹𝐹 ∈ ℝ𝑁𝑁 × 𝑑𝑑 is the extracted features on the target task

ℒ 𝛼𝛼,𝛽𝛽 = log𝑝𝑝 𝑦𝑦|𝐹𝐹,𝛼𝛼,𝛽𝛽

=
𝑛𝑛
2 log𝛽𝛽 +

𝑑𝑑
2 log𝛼𝛼 −

𝑛𝑛
2 log 2𝜋𝜋

−
𝛽𝛽
2 𝐹𝐹𝐹𝐹 − 𝑦𝑦 −

𝛼𝛼
2𝑚𝑚

𝑇𝑇𝑚𝑚 −
1
2 log |𝐴𝐴|

𝐴𝐴 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝐹𝐹𝑇𝑇𝐹𝐹, 𝑚𝑚 = 𝛽𝛽𝐴𝐴−1𝐹𝐹𝑇𝑇𝑦𝑦

Ignore the prior distributions, the objective can be 
simplified to

log𝑝𝑝 𝑦𝑦 ∣ 𝐹𝐹 =
− log 𝐴𝐴 − 𝑦𝑦𝑇𝑇𝑦𝑦 + 𝐹𝐹𝑇𝑇𝑦𝑦 𝑇𝑇𝐴𝐴−1 𝐹𝐹𝑇𝑇𝑦𝑦

2
𝐴𝐴 = 𝐹𝐹𝑇𝑇𝐹𝐹

maximize feature correlation

minimize feature variance



Metric-Based Methods
Design metrics from different aspects.

GBC measures the overlap ratio among different 
classes in the source model embedding space

Michal Pándy et al., Transferability estimation using Bhattacharyya class separability. CVPR 2022.
Song et al., Deep Model Transferability from Attribution Maps. NeurIPS 2019.  

Utilize the PTM to encode the downstream task’s data, 
and evaluate the separability of per-class instances 
considering inter-class and intra-class information.

Utilize the matching degree of attribution 
maps to define the metric.

Calculate the pairwise distance between models 
based on the similarity of their attribution maps 
Identify the source model with the smallest 
distance to the target in this model space.

𝑑𝑑 𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑗𝑗 =
𝑁𝑁𝑝𝑝

∑𝑘𝑘=1
𝑁𝑁𝑝𝑝 cos _ sim 𝐴𝐴𝑘𝑘𝑖𝑖 ,𝐴𝐴𝑘𝑘

𝑗𝑗



Selection of Vision-Language Model (VLM)

Select the best VLM from the model zoo 
solely based on texts

T

V

T

V
T

V

VLM 1

VLM 2

VLM 3

“Dog”
“cat”

texts

Model Selection 
Algorithm

T

V

“Dog”

Zero-Shot Classification

VLM models (e.g., CLIP) have strong zero-shot 

image classification capabilities



Extract representations of 

target semantics based on a 

given VLM model

ModelGPT: convert the cross-modal matching problem between 

VLM and tasks into similarity calculation of in the text space.

Language-Only VLM Selection (LOVM)

 A loyal guard dog 
standing watch over their 
owner's property.

  A faithful guide dog 
helping the visually 
impaired navigate the 
world.

 A friendly dog playing 
with their favorite toy.

T

After describing the target 

category using language models 

like GPT, extract representations 

of target semantics based on a 

given VLM model

Text

Image

However, there is a gap between representations 
in the text and image spaces generated by VLMs.T

“Dog”

Classifier 
based on texts 

Orr Zohar, Shih-Cheng Huang, Kuan-Chieh Wang, Serena Yeung. LOVM: Language-only vision model selection. NeurIPS 2023.



`

Text Samples

Image 
Samples

VLM 1 .  .  .

Test

On

T

V

Text
𝒈𝒈𝒎𝒎,𝟏𝟏 

Image

Target task

“cat”

Gap Vector

Text
𝒈𝒈𝒎𝒎,𝟐𝟐 

Image

Text

𝒈𝒈𝒎𝒎,𝑵𝑵 
Image

.  .  . 

Rectify the embeddings of texts

Estimate the gap vector for target class

𝑮𝑮𝑚𝑚𝓢𝓢 =
𝒈𝒈𝑚𝑚,1
𝓢𝓢  
⋮

𝒈𝒈𝑚𝑚,𝑘𝑘𝓢𝓢
𝓢𝓢

(𝜸𝜸∗)𝐓𝐓𝑮𝑮𝑚𝑚𝓢𝓢

Open-Source
Task’s Gap Vectors

𝒈𝒈𝑚𝑚,1

𝒈𝒈𝑚𝑚,2

Target Task’s 
Gap Vectors

Add

Gap

Predict the ranking based on rectified embeddings

𝒈𝒈𝑚𝑚,1 

𝒈𝒈𝒎𝒎,𝟐𝟐 

SWAB: Bridge the Modality Gap

Chao Yi, Yu-Hang He, De-Chuan Zhan, Han-Jia Ye. Bridge the Modality and Capacity Gaps in Vision-Language Model Selection. NeurIPS 2024.



Result on VLMs Selection

The model zoo contains 43 VLMs (including 

CLIP, BLIP, BEiT-3), and the downstream tasks 

include 23 zero-shot classification tasks.

text-based selection methods w/o considering the modality Gap



Metric-Based Methods

Forward-based methods require forwarding for 
each pre-trained model

which still incurs significant overhead! 

How to select PTM efficiently when 
the model zoo is large?

• Provide a quantitative measure of suitability, making 
comparisons between models straightforward and reducing 
subjective bias.

• Adapt well to different types of data and tasks by adjusting 
the metrics to reflect the specific needs of the target task.

• The effectiveness heavily relies on the appropriateness and 
robustness of the chosen metric.

• Some metrics, especially those involving BP or complex 
statistical analyses, can be computationally intensive, 
limiting the use in resource constrained environments.
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Sparse historical PTM-task interaction

generalize

Learning-Based Methods

Estimate the ability of the PTM on unseen tasks

Main idea: automatically learn the specifications in a data-driven manner
Automatically learning the specifications. Project models, as well as datasets, into the same embedding space, 
where the retrieval process can be easily done by distance calculation in the unified space. 



Model Recommendation
Assume fixed set of models and tasks. Given known performance of task-model pairs, 
utilize collaborative filtering to predict the unknown ones.

Pyry Matikainen, Rahul Sukthankar, Martial Hebert. Model Recommendation for Action Recognition. CVPR 2012.
Yu-Xiong Wang and Martial Hebert. Model Recommendation: Generating Object Detectors from Few Samples. CVPR 2015.



Task2Vec
Task2Vec involves passing data through a probe network to generate a task-specific 
embedding that captures the complexity and characteristics of the task. 

Fisher Information Matrix, measuring how 
sensitive/surprised when the model sees the task. 

Alessandro Achille et al., Task2vec: Task embedding for meta-learning. ICCV 2019.



Model2Vec
Given a set of task embeddings, for PTMs 𝑓𝑓1,𝑓𝑓2, … , 𝑓𝑓𝐾𝐾  , conduct metric learning to obtain 
their embeddings:

learnable 
parameters

……

𝑡𝑡1 𝑡𝑡2 𝑡𝑡 𝑁𝑁 𝑚𝑚𝑘𝑘 = 𝑡𝑡1 + 𝑏𝑏1
⊕ 𝑡𝑡2 + 𝑏𝑏2
⊕⋯
⊕ 𝑡𝑡𝑁𝑁 + 𝑏𝑏𝑁𝑁

− log𝑝𝑝 𝑚𝑚 ∣ 𝑑𝑑 𝑡𝑡,𝑚𝑚1 ,𝑑𝑑 𝑡𝑡,𝑚𝑚2 , … , 𝑑𝑑 𝑡𝑡,𝑚𝑚𝐾𝐾

Training objective

Metric learning: utilize the infoNCE loss to maximize 
the likelihood of the optimal task-model pairs

Restrictions:
• Need a strong probing model.
• The embedding space characterizes only 

task information.

Alessandro Achille et al., Task2vec: Task embedding for meta-learning. ICCV 2019.



Could We Reduce the Selection Burden?
Meta-Representation

Just need one-time forward 
of a general encoder 𝝍𝝍

Task Representation
Learn model representation, 
one for each PTM

Model Representation

Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, Han-Jia Ye. Model Spider: Learning to Rank Pre-Trained Models Efficiently. NeurIPS 2023.
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Mapping PTMs and Tasks into a Space

𝜓𝜓

General
Extractor

Model Reprs.
• Random Init. & Learnable

Task Repr.

Model-Task Space

project 
to

Using historical interactions between PTMs and seen tasks to learn a selector, 
and apply it to unseen tasks and new models.
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Model Representation

Model Representation

Learning model representation in a supervised learning manner
learnable parameters randomly initialized and optimized through the training process
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Task Representation

Task Representation

Using a general encoder 𝜓𝜓
and extracting task repr. with just one forward pass.
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Learning to Rank

Learning to Rank

Model-task Representation

The ranking ground-truth is approximated via the 
rank-aggregation of various forward-based methods.
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Model Spider

Model-task Representation

Re-ranking w/ Efficiency-Accuracy Trade-off
• Extract the PTM-specific task representation
• Replace the general task repr. 𝜇𝜇 𝒯𝒯  via the specific 

one 𝜇𝜇𝑚𝑚 𝒯𝒯  when calculating the similarity with the 
𝜽𝜽𝑚𝑚 of the 𝒎𝒎th PTM

Model Spider: Learning to rank pre-trained models with model and task representation

Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, Han-Jia Ye. Model Spider: Learning to Rank Pre-Trained Models Efficiently. NeurIPS 2023.
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Results on Image Classification Tasks

Model Spider: 
Efficiency-Accuracy Trade-off

C
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)

Time (multiple of acceleration)

𝓝𝓝-LEEP
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NCE
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LEEP
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MODEL SPIDER
(Ours)

LogME

𝑘𝑘 = 42
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The circle sizes indicate the 
memory footprint. Red circles 
are our method with different 
values of the number of PTM-
specific features 𝑘𝑘



Large Language Model Routing
LLM routing is a learning-based decision mechanism that dynamically selects or combines models
from a candidate pool ℳ = 𝑀𝑀1, … ,𝑀𝑀𝑘𝑘  for each input 𝑥𝑥, in order to achieve a controllable trade-off
among output quality, latency, and computational or monetary cost.

Exams Language Knowledge Comprehension Education Healthcare Finance Physics

LLMs

Math



Large Language Model Routing

Formally, a router learns a 
policy 𝑝𝑝 𝑀𝑀𝑘𝑘 ∣ 𝑥𝑥 , which can be 
instantiated as a hard decision 
(e.g., Top-1 or Top-K selection) 
or a soft allocation (a 
probability or weight 
distribution). 
At inference time, the system 
invokes the selected model(s) 
and returns either a single 
output or an aggregation (e.g., 
weighted fusion or re-ranking).

LLM routing is a learning-based decision mechanism that dynamically selects or combines models
from a candidate pool ℳ = 𝑀𝑀1, … ,𝑀𝑀𝑘𝑘  for each input 𝑥𝑥, in order to achieve a controllable trade-off
among output quality, latency, and computational or monetary cost.

LLMs

Select the appropriate 
LLM for the current query



LLM Routing Benchmarks

RouterBench is a standardized evaluation 
benchmark designed specifically for multi-
LLM routing systems. 
▪ It contains over 400K precomputed model 

inference records, covering the outputs of 
multiple LLMs on a wide range of tasks.

▪ The data is collected from dozens of tasks 
across multiple domains (e.g., reasoning, 
QA, math, coding, RAG, etc.) and from 11 
representative LLMs, including both open-
source and API-based models.

Qitian Jason Hu, et al. RouterBench: A Benchmark for Multi-LLM Routing System. ICMLW 2024.



Metrics

Isaac Ong, et al. RouteLLM: Learning to route LLMs from preference data, ICLR 2025.

Total Cost

Accuracy

(𝑐𝑐3,𝑎𝑎1)

(𝑐𝑐2,𝑎𝑎2)

(𝑐𝑐1,𝑎𝑎1)

metrics

Peak Accuracy

Query-Normalized Cost

Area

𝑎𝑎2 , the best performance that router can 
achieve

QNC=𝑐𝑐1
𝑐𝑐3

, the minimum relative cost required to match 

the performance of the most accurate tested LLM

The area of ​​the curve

By evaluating routing algorithms on a benchmark, we can obtain a deferral curve that 
characterizes the trade-off between cost and accuracy. Based on this curve, three evaluation 
metrics are typically derived.



Relationship to Mixture-of-Experts
Both Routing and MoE share the idea of ​​allocating inputs to specialized units.

Routing MoE

Granularity
The “experts” are complete, standalone 

pretrained models that may differ in 
architecture, scale, and training data.

Experts are usually parameterized sub-
networks within a single model

Training 
paradigm

LLM routers are often trained with indirect 
signals such as offline evaluations, reward 

models, or user preference data

MoE gating is typically trained end-to-end 
together with the backbone model using the 

downstream loss



LLM Routing

Dimitris Stripelis et al. TensorOpera Router: A Multi-Model Router for Efficient LLM Inference. EMNLP 2024.

Learn a mapping from query features (extracted via Word2Vec, BERT, LLM, etc.) to the target PTM. 

Implement the “router” with 
common  “classifier”, such as 
• MLP: learn a parametric 

mapping [Stripelis et al., 
EMNLP’24]

• KNN: retrieve LLM based 
on the historical query-
LLM results [Stripelis et al., 
EMNLP’24] [Li, CoRR’25]

• Kmeans/NCM: learn 
multiple centroids for a 
cluster [Srivatsa, Maurya, 
Kochmar, ACLW’24] 
[Jitkrittum et al., ICLRW’25] 
[Zhang et al., AAAI’26] 
[Zhang et al., DAI’25]

https://arxiv.org/pdf/2408.12320
https://arxiv.org/pdf/2408.12320
https://arxiv.org/pdf/2408.12320
https://arxiv.org/pdf/2408.12320
https://arxiv.org/pdf/2408.12320
https://arxiv.org/pdf/2408.12320
https://arxiv.org/abs/2505.12601
https://aclanthology.org/2024.insights-1.15.pdf
https://aclanthology.org/2024.insights-1.15.pdf
https://openreview.net/forum?id=QpOCijgaBE
https://openreview.net/forum?id=QpOCijgaBE
https://openreview.net/forum?id=QpOCijgaBE
https://openreview.net/forum?id=QpOCijgaBE
https://arxiv.org/abs/2505.19797
https://arxiv.org/abs/2508.12631


Richard Zhuang, et al, EmbedLLM: Learning Compact Representations of Large Language Models, ICLR 2025.

EmbedLLM
EmbedLLM trains an encoder–decoder model to learn a low-dimensional embedding for each 
LLM that reconstructs or predicts its task performance.

Train a lightweight router that takes the problem features and the 
model embeddings as input and selects the most suitable model.

• The learned embeddings are reusable across tasks, 
and even a simple linear classifier on top of them 
outperforms KNN baselines.

• A linear classifier has limited expressive power 
and can only represent linearly separable decision 
boundaries.

• Hard to generalize to new PTMs.



Capability Instruction Tuning

Based on model descriptions and current task descriptions, estimate the model's capability on the current task

Implement the selector in the form of an LLM. Using instruction tuning to enable a general-
purpose large model (Phi-1) to learn how to perform model-task matching.

Yi-Kai Zhang, De-Chuan Zhan, Han-Jia Ye. Capability Instruction Tuning: A New Paradigm for Dynamic LLM Routing. AAAI 2025.



LLMs Select the appropriate LLM for the current query

Dynamic Selection of LLMs

The selection method can integrate the updated model zoo, select a better large model 
for the current user input, and achieve or even exceed the capabilities of the current 
optimal model across various tasks with fewer resources

As time progresses, new LLMs are continuously released, and the model zoo is updated and expanded

Pe
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rm
an
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Time



GraphRouter

Tao Feng, Yanzhen Shen, Jiaxuan You. GraphRouter: A Graph-based Router for LLM Selections. ICLR 2025.

GraphRouter constructs a heterogeneous graph and predicts edges to select LLMs:

• Represent tasks, queries, and LLMs as nodes in a heterogeneous graph; edges encode 
historical interactions and performance/cost relationships.

• Apply a GNN to learn embeddings for nodes and edge features that capture contextual 
relationships among tasks, queries, and model capabilities.

• Perform edge prediction to estimate the expected performance and computational cost 
for a given query–LLM pair, and use these predicted attributes to select the LLM that 
best balances performance and cost.

• Model complex relational 
structures among queries, 
tasks, and models.

• Require constructing and 
maintaining a global 
graph over the entire 
training dataset, whose 
size and computational 
cost grow rapidly as the 
dataset scales.



ICL-Router

• Encode each query into a vector representation 
and jointly train a projector and LLM-based 
router to reconstruct the original query from its 
vector. 

• For each candidate model, profile its 
performance on a fixed set of queries and 
convert these into in-context vectors that 
represent model capability profiles. 

• Train the router to take the query vector and a 
model’s in-context vectors as input and predict 
whether the model can correctly answer the 
query, then select the model with highest 
predicted success probability.

Chenxu Wang et al. ICL-Router: In-Context Learned Model Representations for LLM Routing. AAAI 2026.

ICL-Router is a two-stage in-context routing method.



Analyses from the Perspective of LLM Cost
Does there exist an integer 𝑛𝑛 such that 𝑛𝑛2 + 𝑛𝑛 + 41 is a composite number? 

If yes, please provide the smallest non-negative n as evidence.

Direct Output: 
No, this expression is 
always a prime 
number.

Correct: 

Self-Consistency 
Output: 
Sample1:n=41; 
Sample2:n=40; 
Sample3:n=41; 
Majority vote:n=41(2/3); 
Final answer: Yes,n=41

Correct：

Length：≈25–40 tokens

CoT Output: Substitute 
n=40: 𝑛𝑛2 + 𝑛𝑛 + 41 =
1681 = 412 (composite); 
Classic results show 
primes for 0 ≤ 𝑛𝑛 <
40→smallest n=40

Correct：

Phi-2 (≈2.7B) Mistral 7B 
Instruct (≈7B)

Qwen2.5-14B-
Instruct (≈14B) GPT-4.1

Length：≈6–10 tokens Length：≈40–60 tokens Length：≈80–130 tokens

ToT Output: Layer0: 
Search neighborhood of 
n≈40→Branch 
A(n=39→prime)、Branch 
B(n=40→composite, 
candidate 
smallest)→Conclusion: 
Yes, smallest n=40
Correct：

LLMs have different costs when solving complex tasks. 
How to balance model capability and cost when selecting LLMs?



Fusing Model & Data Representation

Transform the model selection problem into a representation-based “model 
recommendation” problem, and learn how to rank LLMs under different costs

- Inherent Properties of Models：
Including model publisher, name, architecture, number of layers, parameter 
count, training details, and Hugging Face information, etc.

- Capability Distribution of Models：
Including offline level: evaluation accuracy released by the model; online level: 
accuracy evaluated using the "bridge" core set

- Semantic Embedding of Data：
Using different general text encoders (e.g., GTE, Qwen, and RoBERTa) to 
extract semantic vectors
- Meta-Dimensions of Data：
Meta-information includes answer difficulty, reasoning level, content diversity, 
temporal stability, and domain professionalism, etc.

Model Representation

Data Representation
Top-K nearest neighbor 
training data of user queries, 
including data features and 
model performance, etc.

Cross Features
Recommendation 

System

Evaluation

Yi-Kai Zhang, Shiyin Lu, Qing-Guo Chen, Weihua Luo, De-Chuan Zhan, Han-Jia Ye. Let the LLM Stick to Its Strengths: Learning to Route Economical LLM. NeurIPS 2025.

Cost Representation



Fusing Model & Data Representation

Incorporate prior information (e.g., cost) as an 
input dimension to add manual control options for 
model selection

Balance Between Reasoning Accuracy & Cost: 

Better Accuracy Under Equal Cost

Oracle (w/ low cost & high perf.)

Pareto Frontier of 
Performance-Cost

Qwen3-4B, 
Qwen3-8B, 
Qwen3-14B, 
Qwen3-30B-A3B

two versions w/ 
thinking and w/o 
thinking

LLM Zoo



Router-R1

• Represent the router as a capable LLM that alternates “think” 
actions (internal reasoning) and “route” actions (invoking 
external LLMs).

• Train the router with reinforcement learning using a reward 
function that combines format correctness, final task success, 
and a cost penalty, encouraging both accuracy and efficiency.

Haozhen Zhang, Tao Feng, Jiaxuan You. Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning, NeurIPS 2025.

Router-R1 formulates LLM routing as a sequential decision-making problem.

• Multi-round routing allows the router to iteratively 
perform internal reasoning, dynamically choose 
which LLMs to query, and aggregate partial outputs 
over several steps. 

• Enables the system to handle complex, multi-step 
tasks more effectively, refine decisions based on 
intermediate results, and balance performance with 
computational cost.



Selection of Time-Series Forecasting Models

Ting-Ji Huang, Xu-Yang Chen, Han-Jia Ye. SeqFusion: Sequential Fusion of Pre-Trained Models for Zero-Shot Time-Series Forecasting. CoRR 2025.

Power Healthcare

…

Traffic Weather

…
Single-
domain 
Models

Single-
channel 

Time Series

Model Selection & 
Multi-channel Fusion

Unseen Domain 
Sequences

Zero-Shot Forecasting

Prediction



Selection of Time-Series Foundation Models

Hao-Nan Shi, Ting-Ji Huang, Lu Han, De-Chuan Zhan, Han-Jia Ye. One-Embedding-Fits-All: Efficient Zero-Shot Time Series Forecasting by a Model Zoo. CoRR 2025.

2. Based on model meta-representations and sequence meta-
representations, perform ranking and selection of models 
according to their domain adaptability on the current sequence.

1. Train a general representation model (General Extractor) to 
generate sequence meta-representations, using sequence 
reconstruction self-supervision + transferability loss for training.



Selection of Time-Series Foundation Models

GIFT-Eval experimental results, including 23 large-scale time-series datasets and 97 configurations

The time-series model zoo includes the 

following foundation models:

Chronos (Chr.bT/bM/bS/bB), Moirai 

(Moi.S/B/L), VisionTS (Vis.B/L/H), 

TimesFM (TFM.1/2), Sundial (Sun.B).

Time-series foundation 
models emerge 
dynamically →
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Learning-Based Methods
Main idea: automatically learn the specifications in a data-driven manner

• Automate the specification learning process.
• Usually achieve better PTM selection 

performance.
• Enable scalability by adapting to new models 

and tasks in an end-to-end manner.

• The effectiveness heavily depends on the quality, 
diversity, and the scale of the training data. 

• The process of training and deploying these systems, 
especially for large models, can be resource-intensive, 
requiring substantial computational power and time.



Related Topics



Queries and targets over different levels and granularities.

Rather than treating each PTM as a whole, model reuse can operate at a finer granularity by 
assembling models from components such as network blocks or parameter-efficient tuning modules.

Multi-Level Selection



Model Assembly

Model LEGO

Enable fine-grained model selection targets, where reusable parts are identified and 
recombined to build models tailored to specific tasks.

Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, Xinchao Wang. Deep Model Reassembly. NeurIPS 2022
Jiacong Hu et al. Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks. NeurIPS 2024

Deep Model Reassembly

Model Zoo Network Partition

Network Reassembly

Disassembling
process

Assembling
process



Multi-PTM Selection
Selecting a set of PTMs may not equal to selecting top-K PTMs.

Andrea Agostinelli, Jasper R. R. Uijlings, Thomas Mensink, Vittorio Ferrari. Transferability Metrics for Selecting Source Model Ensembles. CVPR 2022
Vimal K. B., et al. Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach. ICCV 2023

Obtaining the ground-truth of the model set is a 
combinatorial optimization problem.

Also depend on the usage 
of multiple PTMs.



Model Collaboration
Instead of selecting a single PTM, aggregating multiple PTMs (with zero-shot ability) to 
collaborate in parallel or sequentially can enhance model robustness and accuracy. 

Lihu Chen, Gaël Varoquaux. What is the Role of Small Models in the LLM Era: A Survey. CoRR 2024
Shangbin Feng, et al. When One LLM Drools, Multi-LLM Collaboration Rules. CoRR 2025

Complex target tasks can often be decomposed into multiple sub-tasks, each handled by a different PTM with distinct expertise.

• Sequential collaboration: small models can tackle easy tasks, while large models can tackle what small models cannot 
handle. Furthermore, some tasks can be decomposed into sub-tasks, where different PTMs handle each step sequentially. 

• Parallel collaboration: multiple PTMs contribute jointly to task performance through techniques such as weighted 
averaging or model merging



ToolsPretrained 
Models

Reference 
image

Prompt

Model

Generated 
image

Text-to-Image

Text-to-Speech

Text Speech

Model

Cross-Modal Retrieval 

Text

…….

Image 
database

Model

Sorted 
images

Tool Learning
Pre-trained models form individual tools through specific workflows.



Tool PlanningStage 1

Tool SelectionStage 2

Question Intent 
Understanding

Sub Question 1 Sub Question 2 Sub Question 3

Task Decomposition

LLM

Sub Question 2
Retriever

Sub Question 1

Sub Question 3 Tools 

Tool CallingStage 3

Tools 

Sub Question 1-N

LLM

Parameter
Output

Response   
GenerationStage 4Output 1

LLMOutput 2
Output 3

Response

In the traditional four-stage setting of tool 
learning, tool selection and tool calling 
can be analogized to model selection and 
hyperparameter setting, respectively.

Tool Learning
In the field of tool learning, the 
underlying implementation of many 
tools is based on deployed general-
purpose models.

Consequently, the boundary between 
tools and models is becoming 
increasingly blurred. 



Tool Learning

Yujia Qin, Shihao Liang, Yining Ye, et al. ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs. ICLR 2024.

The model relies on a static training set, whereas real-world APIs are dynamic and prone 
to frequent interface changes or deprecations.

ToolLLM systematically addresses the issues of insufficient instruction diversity and low 
robustness of complex calls by constructing the ToolBench dataset covering 16,000 real APIs. 
This has successfully unlocked the significant potential of open-source models to match the 
performance of ChatGPT in zero-sample tool invocation scenarios.



OctoTools is a training-free agent framework. It 
achieves zero-cost immediate expansion of tools 
through standardized "Tool Cards", and with a 
"planner-executor" dual-layer architecture and an 
automated toolset optimization algorithm. 

The Alita framework achieves the self-evolution 
capability by independently writing code and 
encapsulating it using the MCP protocol into new 
tools. 

Tool Learning

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, James Zou. OctoTools: An Agentic Framework with Extensible Tools for Complex Reasoning. CoRR 2025.
Jiahao Qiu, Xuan Qi, Tongcheng Zhang, et al. ALITA: Generalist Agent Enabling Scalable Agentic Reasoning with Minimal Predefinition and Maximal Self-Evolution. CoRR 2025.

It enhances the performance of LLMs. This enables the generation and maintenance of an 
exclusive subset of tools that can be dynamically 
created based on task requirements.



Discussions



Coupling of Selection and Adaptation
The generalization ability of an adapted model depends not only on the selected PTM but also on 
the adaptation strategy employed. Thus, PTM selection and adaptation are inherently coupled 
While some methods, such as transferability estimation, attempt to improve selection, they often fail 
to account for the mismatches between fine-tuning and advanced adaptation techniques.

Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, Frank Hutter, Josif Grabocka. Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How. ICLR 2024.

Search both the PTM and corresponding fine-tuning strategies (hyperparameters) with meta-learning.



The Necessity of the Adaptation Stage
Most adaptation techniques are task-specific and require extensive hyper-parameter tuning, making 
them difficult to generalize. Lacking a universal adaptation method slows down the development.
Most modern PTMs have the zero-shot ability which generalizes to new tasks without additional 
training. This property decouples the selection and adaptation stages, but may also weaken the 
ability of the selected PTMs.

w/ an explicit adaptation phase

𝒯𝒯1 𝒯𝒯2

There is heterogeneity between tasks (models)

Model 
Adaptation

w/ zero-shot generalization ability

𝒯𝒯1 𝒯𝒯2
Direct 

Generalization

There is heterogeneity between tasks (models)

What is the right way to adapt a selected (foundation) PTM and further boost its ability? 
Such as in-context-learning, model reprogramming, etc.



Diversity and Strength of the Model Zoo
The success of model reuse depends on the quality, diversity, and generalization of PTMs in the 
model zoo. A well-curated collection improves the chance of selecting suitable models—even at 
fine-grained levels such as instances or tokens. Therefore, improving the curation and 
management of model zoos is essential for maximizing the impact and utility of model reuse.

Image-Text Multimodal PTM

[Radford et al., ICML’21] 

Time Series Forecasting PTM

[Ansari et al., TMLR’24] 

Language Generation PTM

[Brown et al., NeurIPS’20] 

Whether reusing model zoo treats the diversity of PTM as a prerequisite? 



Manage A Huge Model Zoo
The challenge: select the right PTM given a huge model zoo (like HuggingFace).
• How to manage the PTMs in the model zoo to facilitate the selection and adaptation.
• How to link different components of PTMs in a model zoo?

Ameya Prabhu et al., Efficient Lifelong Model Evaluation in an Era of Rapid Progress. NeurIPS 2024.

• Tree of PTMs
• Graph of PTMs
• Island of PTMs
• …



Model Representation Learning
Model Representation Learning vectorizes PTMs to encode their characteristics, forming hyper-
representations that allow model selection without direct access to the original model parameters.

These representations can be learned based on 
intrinsic permutation-invariant properties of a PTM 
and can even be decoded back into model weights 
[Schürholt et al., NeurIPS’22][Schürholt et al., ICML’24]. 

Learned representations serve multiple purposes: 
they act as model specifications within a model zoo, 
assist in efficient retrieval, and serve as auxiliary 
modalities during adaptation [Zhou et al., CoRR’24].

Automatically construct permutation equivariant 
models, which is referred to as universal neural 
functionals (UNFs), for any weight space.

Konstantin Schürholt, Michael W. Mahoney, Damian Borth. Towards Scalable and Versatile Weight Space Learning. ICML 2024.
Allan Zhou, Chelsea Finn, James Harrison. Universal Neural Functionals. CoRR 2024.

https://arxiv.org/abs/2209.14764
https://arxiv.org/abs/2209.14764
https://arxiv.org/abs/2209.14764
https://arxiv.org/abs/2406.09997
https://arxiv.org/abs/2406.09997
https://arxiv.org/abs/2406.09997
https://arxiv.org/abs/2402.05232


Manage A Huge Model Zoo
The dual problem: how to evaluate the ability of a PTM with limited data efficiently?

Ameya Prabhu, Vishaal Udandarao, Philip Torr, Matthias Bethge, Adel Bibi, Samuel Albanie. Efficient Lifelong Model Evaluation in an Era of Rapid Progress. NeurIPS 2024.
Jin Peng Zhou, Christian K Belardi, Ruihan Wu, Travis Zhang, Carla P Gomes, Wen Sun, Kilian Q Weinberger. On Speeding Up Language Model Evaluation. ICLR 2025.

Use multi-armed bandits to sequentially identify 
the next (method, validation sample)-pair to 
evaluate and utilize low-rank matrix factorization 
to fill in missing evaluations.

Sort & Search (S&S) reuses previously evaluated 
models by leveraging dynamic programming 
algorithms to selectively rank and sub-select test 
samples.



Conclusion
Effectively taking advantage of PTM resources, 
can significantly enhance the sample and time 
efficiency of the machine learning paradigm. 
And the key lies in the efficient selection (and 
adaptation) of models.

▪ PTM selection requires capturing the 
characteristic of PTMs as well as tasks.

▪ Select the right PTM based on 
semantic/rules, forward-based metrics, or 
learned selectors/routers.

▪ The PTM selection notion could be 
generalized to       image classification 
PTMs,      LLMs,       VLMs,        time-
series prediction models, and even LLM 
tools. 



Thank you
Q&A 

For more discussions, please contact yehj@nju.edu.cn 

mailto:yehj@lamda.nju.edu.cn
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