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Introduction



Machine Learning Applications

Machine learning has been applied in various fields successfully.
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Machine Learning Paradigm

- @»
ML Algorithm
Classical learning paradigm
- Given a task 7 = {(x;, y,)IL;}
= The model fy: X — Y, contains the architecture f and weights We need to carefully
6 is learned via f, = A(0,, f | D), e.g., determine which data to
use, the model architecture,
: training objective, and
4 X;i), Vi g ovj p
mlen z (fo(xi), 1) inference strategies, etc.

(Xi,yi)NT
Learn the model from scratch. For example, with gradient-based

optimizer, we update 6 from initialization 8, with gradients Vg2,



Machine Learning Pre-trained Models
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A Pre-Trained Model (PTM) is a machine learning These PTMs encapsulate valuable inductive
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Machine Learning Pre-trained Models
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Types of PTMs

Multi-modal: imageZ2text, text2image, ...

Vision: image classification, detection, ...

Language: text generation, Translation, ...

Tabular: classification, regression, ...

Audio: speech recognition, text2speech, ...

RL: robotics, ...


https://huggingface.co/
https://modelzoo.co/
https://www.kaggle.com/models

Learning Paradigm

improve performance by
changing the model

improve performance by

changing the data Next step
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data-centric
Learning from Data - Learning from Data and Pre-trained Models

pre-trained-model-centric

Input Data ML Algorithm Output Model

Reuse PTMs




Possible Usage

Incorporate a set of PTMs into the machine learning process.

from model_reuse_lib import Client

client = Client()

target_model = client.fit( model zoo path=zip_path)

pred_y = target _model.predict(test x)

Expert-level Ability Few-Shot Training Avoid Forgetting

b Q-



Advantages and Goals of Model Reuse

Knowledge Transfer, A - B
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Possible Reuse Paradigms

—————————————————————————————

By building on existing models, reuse accelerates training, lowers computational and data costs, and mitigates
catastrophic forgetting in dynamic or continually evolving environments.

« With well-designed reuse strategies, knowledge from these PTMs can be efficiently extracted and
extended beyond their original scope, facilitating numerous applications.



Reuse PTMs Instead of Learning from Scratch

Different from the common neural scaling law (the performance, training data, and

model size generally should follow a power law), the performance of a model drops
significantly in the data scarcity case [Wang. Panda, Wang, ICML’23].
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The common power law is broken once

By reusing PTM, the power law 1s
entering the data scarcity regime.

reproduced under the data scarcity regime.


https://openreview.net/forum?id=iXYnIz4RRx

Possible Reuse Paradigms

—————————————————————————————

Reuse PTMs from a model zoo
Given a fixed set of PTMs G =

@% 9(@ {98, 95, -, 98 }, design a model reuse
algorithm A’ such that

fo = A0, f | T;G)

-----------------

o
-----------------

-----------------

"" 0 For example,

—.—> 0.3

., omin > e(fy(xillgd, g8, 98,0 )
.................. (xi»J’i)"’T

———————————————————————————————————————————————————————

By building on existing models, reuse accelerates training, lowers computational and data costs, and mitigates
catastrophic forgetting in dynamic or continually evolving environments.

« With well-designed reuse strategies, knowledge from these PTMs can be efficiently extracted and
extended beyond their original scope, facilitating numerous applications.



Use Foundation Models?

Why not utilize one foundation model for different tasks directly?

One foundation model cannot
deal with different tasks.

#1Inst. #Feats. # Classes # Feature Types

Num. Bin. Cat.

mean 30567 223 6 206 25 17
std 106943 786 12 781 144 119
min 32 2 2 0 0 0
25% 596 9 2 4 0 0
50% 2218 21 2 10 0 0
75% 11008 61 6 50 2 8
max 1025009 7200 100 7200 1555 1555

Summary statistics for all
176 tabular datasets.

[Grinsztajn, Oyallon,
Varoquaux. NeurIPS'22]

Inverse scaling law indicates larger
model may not help in some cases.

Inverse Scaling Prize Tasks
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[Wei et al., EMNLP’23]

There exist ability divergence
among foundation models.

Table 1: Main Results of T-Eval. Overall stands for the score calculated from an average of metrics on all subsets.
(bold denotes the best score among all models, and underline denotes the best score under the same model scale.)

Model ‘ INSTRUCT PLAN REASON RETRIEVE UNDERSTAND REVIEW Overall
| Sting JSON String JSON Sing JSON Swing JSON Swing JSON  Choise
API-Based
Clande2, 97.7 978 871 849 629 628 T65 TR2 T49 820 70.4 788
GPT-3.5 94.1 99.1 866 866 652 703 983 862 829 88.1 75.6 840
GPT-4 967 959 889 86.7 656 651 913 866 832 883 94.5 86.4
Open-Sourced
LLaMA2-7B 687 02 470 91 371 7.1 303 35 368 121 38.6 274
CodeLLaMA-7B | 96.0 09 614 443 287 09 36 12 254 14 40.0 28.6
AgenlLM-7B 80.8 131 531 159 501 17.5 702 138 664 261 44.8 41.4
Vicuna-7B 653 308 134 478 476 499 124 326 668 542 585 448
InternL M-7B 484 299 677 43.1 488 250 721 222 704 302 46.2 45.8
ChatGLM3-6B | 63.3 808 469 385 482 241 665 240 799 356 54.8 514
Mistral-7B 597 636 772 649 630 153 926 110 798 181 63.2 56.0
Baichuan2-7B 680 780 656 39.0 513 313 737 285 80.1 39.2 614 56.5
Qwen-7TB 287 942 662 63.1 564 341 890 353 777 46l 616 59.5
LLaMA2-13B 667 00 487 651 424 105 427 66 457 131 53.0 313
Vicuna-13B 67.0 308 258 540 563 49.1 198 209 730 588 60.8 48.1
WizardLM-13B | 14.1 655 777 408 360 252 685 222 640 31.6 71.5 49.0
Baichuan2-13B | 8.0 517 695 52.1 566 27.1 845 269 805 315 57.3 50.3
Qwen-14B 49.7 976 79.6 69.7 586 461 959 553 650 643 56.9 66.3
WizardLM-70B | 9.6 317 815 427 384 470 383 562 661 611 287 42
LLaMA2-70B 845 734 580 63.1 447 175 620 17.1 673 223 62.8 53.0
Qwen-72B 278 983 851 734 635 554 768 650 845 66.1 §0.3 714

[Chen et al.,
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How to Reuse PTMs Effectively?
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PTM Selection and Adaptation

PTM Selection

PTM Adaptation

[Zhou, FCS’16]



https://openreview.net/forum?id=iXYnIz4RRx
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PTM Selection

Target Tasks
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Fine-tuned performance: 85% 93% 73%




PTM Selection
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Pre-trained Model Selection

selecting suitable pre-trained models for target tasks



Target Tasks

PTM Adaptation

Adapt selected PTMs towards the target task

Across various domains, e.g., tabular data
[Kuzborskij and Orabona, ICML'13], image [Zhou et al.,
IJCV'22], texts [He et al., ICLR’22], ...

Across various tasks, e.g., zero/few-shot learning

[Radford et al., ICML'21], continual learning [Zhou et al.,
IJCAI'24], ...

Select “most suitable” PTMs first, and
then apply the adaptation scheme to
improve the joint performance



PTM Adaptation for Tabular Data

Heterogeneity in Attribute Heterogeneity in Class Space
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Binary-class Multi-class

Reuse the pre-trained classification/regression model on one or more tabular datasets to a target
tabular dataset [Kuzborskij and Orabona, ICML'13][Ye et al., ICML'18][Zhu et al., ICML'23][Zhou et al., CoRR’23].
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PTM Adaptation for Vision and NLP Tasks
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PTM Adaptation for Zero/Few-Shot Learning
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target task even with zero/few training data.
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PTM Adaptation for Continual Learning

« Continual Learning (a.k.a. incremental
learning/lifelong learning) refers to the
scenario where the model needs to be
continually updated with new data.

« Data comes in the stream format, which
cannot be held for storage or privacy
issues [Chen, Liu, Lifelong Machine Learning, 2018]

[Ven, Tuytelaars, Tolias, NMI'22].

A

>'-;)~

Task 2

Reuse the old model given the data from the new
task, without fully access to the data from old
classes [Zhou et al. [ICAI'24][Zhou et al., TPAMI'25].
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PTM Adaptation for Large Language Models
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\I§Textdata } @ }

Typical Machine éy Textual Model
Learning Process Learning
'I : Algorithm
O
Image data ] } 26] Visual Model
Selectloil E
Tarqget Data
Adaptation
Learning via Targe
Model Reuse [ S

Model Zoo ‘Wanagement



ES NO -!. 4
0 e
A single method

The Intuition

) o N
£y et
¢ x "’-.-;
T P
o 578
264¢

< G

Next-generation of
model

/u

=

| /\/:

<

@

N J

Ensemble of PTMs

Machine learning evolves in cycles—from a single
model, to (selective) ensembles, to a stronger
next-generation model, and back to ensembles of

such models.

Model reuse can be seen as an efficient,
structured form of ensembling existing models to
extend capabilities without retraining from scratch.



Challenges



Challenges

« Unify fragmented research efforts across different fields

As model reuse becomes a natural choice in various applications, a holistic and task-agnostic

perspective is needed. Establishing a big-picture view of model reuse can bridge the gaps
between specialized subfields and promote broader applicability.



“Synonyms” in PTM Selection
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“Synonyms” in PTM Adaptation
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i : : : / Model Reprogramminy

I | 1 - prenes e

I . I

1 min tfolxidgedy) 1 T

; ! (xpy)~T ; ! ~

I I Language Molecule
| XT Tunable Source Parameters : i +A”6 o 6”% : i Vision g Bio-medical
; White-box SFUDA : : : : N =
! [Liang, Hu, Feng. ICML20] | ! [Kuzborskij & Orabona, ICML'13] | ! [Chen, AAAT'22]
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i [Jia et al., ECCV'22] | | | | [Schiirholt et al., NeurIPS'21]
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Challenges

Unify fragmented research efforts across different fields

Integrating model reuse across both small and large PTMs
With the emergence of large PTMs such as foundation models, reusing such models involves

both shared principles and diverse implementations. Integrating model reuse strategies can
help connect diverse methodologies and inspire the design of novel model reuse strategies.



Small and Large PTMs

There is no strict boundary between small and large PTMs.

__________________ J
%
> The emergence of large PTMs has significantly

impacted the model reuse workflow, as
computational costs have become a crucial factor,
------------------- and there are diverse strategies for extracting
expert knowledge from these models.




Evolving of the PTM’s Ability
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[Donahue et al., ICML'14]

Could be applied to new
instances from a task

Could be applied to new
tasks with slight adaptation
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From Classical PTMs to Foundation PTMs

There is heterogeneity between tasks (models) There is heterogeneity between tasks (models)
Tk > — T = . =
Qe ﬂ%ﬁ - gl @ @
T Model 7 Direct 7
Adaptation 2 Generalization ~2
w/ an explicit adaptation phase w/ zero-shot generalization ability

directly applied to downstream tasks

Different (foundation) PTMs with enhanced capabilities.
Decouple the “selection-adaptation” phases of PTM reuse.



Models with Strong Generalization Ability

Zero-Shot PTMs also demonstrate diverse ability across domains.

| I |
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This tutorial connects the reuse of both types of PTMs, highlighting commonalities
and differences to provide deeper insights into model reuse methodologies.
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Model Reuse

Survey on Model Reuse

{ Semantic/rile-based }—( For small models: Taskonomy [Zamir et al., 2018], Semantic Specification [Zhou and Tan, 2024]
i For large models: HuggingGPT [Shen er al., 2024]. VisProg [Gupta and Kembhavi, 2023]
For small models: GBC [Péndy et al., 2022], NCE [Tran et al., 20191,
Metric-based LEEP [Nguyen et al., 2020], Deep Attribution [Song et al., 2019]
—( Model Selection )— methods }‘

For large models: LOVM [Zohar et al., 2023], SWAB [Yi et al., 2024]

For small models: Task2Vec [Achille er al.. 2019]. MRE [Ding et al., 2022],
Model Spider [Zhang et al., 2023]

Learning-based
methods

For large models: Mixture of Experts [Jacobs er al., 1991], Model-SAT [Zhang er al., 2025],
Zooter [Lu er al., 2024], Routoo [Mohammadshahi er al., 20241,

For small models: HMR [Wu er al., 2019], C-LoRA [Smith er al., 2023]

Adapt PTMs for
target data preparation

For small models: #o [Li et al., 2018], SN-GANs [Miyato et al., 20181, REFORM [Ye et al., 20211,
Knowledge Transfer [Hinton e al., 2015], Twice Learning [Zhou and Jiang, 2004],
FitNets [Romero er al., 2015]. RKD [Park er al., 2019]

Adapt PTMs for
target model training

g s N s
T
i S N K s I i B &

—(Model Adaptation )—

For large models: MiniLLM [Gu et al., 2024], LoRA [Hu et al., 2022],
Model Reprogramming [Chen, 2024], LLaVA [L1u et al., 2023], BLIP-2 [Li et al., 2023]

For small models: NCM [Mensink et al., 2013], Head2Toe [Evci ef al., 20221,VQT [Tu et al., 2023],
FisherMerging [Matena and Raffel, 20221, WiSE-FT [Wortsman er al., 20221,
OTFusion [Singh and Jaggi, 2020]

Adapt PTMs for
target model inference

For large models: RAG [Lewis et al., 2020], CoT [Brown et al., 2020]

ﬁ

Model Assembly [Yang er al., 2022], Model Representation Learning [Schiirholt ez al., 2022], Model Editing [Mitchell et al., 2022],

For large models: VCD [Menon and Vondrick, 2023], CuPL [Pratt er al., 2023] )
Model Repair [Luo et al., 2023], Model Relationship Discovery [Yu and Wang, 2024], Managing LLMs [Shen et al., 2024] J

—( Other Topics

I =

Da-Wei Zhou, Han-Jia Ye. 4 Unifying Perspective on Model Reuse: From Small to Large Pre-Trained Models. 1IJCAI 2025.



Part 1: PTM Selection



PTM Selection
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Previous Methods

PTM Selection
The vanilla strategy
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Select PTMs Efficiently



Taxonomy of PTM Selection

The target of model selection is to choose one or multiple related PTMs from the model
zoo that are suitable for the related dataset. This is a typical retrieval process, where the
core problem is to rank all models in the model zoo correctly.

Based on how to calculate the matching degree, there are three main types of methods

Semantic/rule-based methods

Semantic/rule-based methods are designed to utilize the semantic information (e.g., natural
language descriptions) or manually designed rules to find related models.

Metric-based methods

Metric-based methods rely on defining the matching degree between the model’s output and the
corresponding dataset.

Learning-based methods

Learning-based methods directly learn the similarity between data and models.



Semantic/Rule-Based Methods

Main idea: directly describe the task or define the rule of model selection

Task Application Structure ®°®

My task is to classify the S
images of birds and dogs. ézy Classification NLP LSTM
E @l Classification Vision CNN ‘
; i Regression Tabular Linear
Retrieval r >
< Model Zoo with Specification

This semantic information is commonly represented by natural languages, expressing the
capability of models and the upstream training data.



Semantic/Rule-Based Methods

PTMs in the model zoo are accompanied by descriptions (known as “semantic
specification” or “statistical specification”). When facing a new task, the users are only
required to describe their requirements as a new query and search within the model zoo.

The semantic specification contains
descriptive information related to the
model, including the target task (e.g.,
classification or regression), the kind of
machine learning applications (e.g., natural
language processing or image
recognition), the model structure (e.g.,
SVM, CNN, or Decision Tree), etc.

= statistics of the datasets
where the PTM is pre-trained

= “The model is pre-trained
on xxx datasets, the
architecture is xxx”

semantic specification statistical specification

Zhi-Hua Zhou, Zhi-Hao Tan. Learnware: small models do big. Science China Information Sciences. 2024.



Semantic/Rule-Based Methods

Taskonomy proposes a fully computational approach to discover and model the
underlying structure of the space of visual tasks.

Reuse the related source encoder based on the constructed Taskonomy. Attach a small, shallow transfer
network on top of the frozen source encoder.

(I) Task-specific Modeling E (IT) Transfer Modeling E (IIT) Task Affinity . (IV) Compute Taxonomy
Layout .1‘ Normals Reshading Layout Normals Reshading Normalization
Yy J &8 o o»
2D Segm. 3D Keypoints ~ 2.5D Segm i Autoencoding
AHP task affinities i
Binary Integer ,"'I P (. P.VamShmg Pts.
Program (f57 Pose
08 7 ’ \Jlg Saw ) @nﬁx)
ﬁ,’ _ § l_nt]l’lg

w d b 'ect Class. (100
15t Order - .J (100)

.- — —» 2" Order bject (100 emantic Segm.
3 Order 55D ﬁ

Random Proj.
--p Frozen

@vature

Amir Zamir et al., Taskonomy: Disentangling Task Transfer Learning. CVPR 2018.



Semantic/Rule-Based Methods

) HuggingGPT utilizes GPT to manage millions of
models on Hugging-Face. Natural language is
utilized as the interface to align all models.

Please generate an image where a girl is reading a book, and her pose is the same as the boy in the image
example.jpg, then please describe the new image with your voice.
T -

Pmmmmmmmmmmmmm e , e mmmmeememeeemecceececeeeoa
task: pose-det. task: pose-det. 4 f,: In-context task-model assignment: ~ 1
. . !
args: ) args: JIIDIIIIITIIIIIT) | 3 hustfyolostting ! . .
image: example.jpg image: <resource-2> image: <resource-2> } I Query : ! facebook/detr-resnet-101 : H -
L ey - uggin INVOIVES Tour core steps
A eV e S : | a TahaDouaji/detr-doc-table-detection i g g -
= ! args: ) 1 Model Cards in HuggingFace !
args: :: task: object-det. | :-_|:v1_a§fi:-<ie_sc_>hi_r59;%>_1: { :
text:a reading girl || args: args: || | ) ! . . .
image: <resource-1> :: image: <resource-2> text: <resource-5> L task: image-class. ) \\" ! i aS a n n I n g " S I n g O a n a yze e

& |
Stage #4: Response Generation

HT4] object-det.
facebook/detr-resnet
[bounding box]

intention
« Model Selection: Ask GPT to select the most

{T1] pose-det.
openpose
[image-2]

Hybrid Endpoints

|
H Bounding boxes
:w'\th probabilities

,,,,,,,,,,,,,,,, HuggingFace Endpoint

1
: : (facebook/detr-resnet-101)

T2] pose-to-image
lym/sd-ctl-pose

HT5] image-to-text
nlpconnect/vit-gpt2

______________ | | [ Prediction> [i -3] “agirl sitting on ...” .t b I d I H H F
T3] ;:::ggee-class. HT6] text-to-speech S u I a e m O e O n u g g I n g a Ce
google/vit facebook/fastspeech
[classes with prob] [audio-1]

. « Task Execution: Invoke and execute selected
models

[Text-1] = <resource-5>

d]»

[Audio-1]

to analyze the pose of the boy in the image. |

« Response Generation: Using GPT to integrate
predictions of all models

The image you gave me is of "boy". The first thing | did was use '~
fed that image, specifically located at [Image-1], into the model to get an output image of the pose, located at [Image-2]. Then | take that

pose and generate a new image, located at [Image-3], using '« and the instruction "a girl is reading". Next, |
ran object detection on the image generated in the previous step, to get predictions of the objects present in the image, including the box
location. These predictions were run through the ¥ model. The box was drawn on the image, which is located at
[Image-4]. Then, | used the predictions of a image classification model = and a image caption model a
2 model to generate the caption for newly generated image. It generated text: "a girl sitting on a bed
reading a book". Lastly, | ran the = model to convert the generated text into audio, located at [Audio-ll.)

Yongliang Shen, et al. HuggingGPT: Solving Al Tasks with ChatGPT and its Friends in Hugging Face. NeurIPS 2024.



Statistical Specification

Use RKME to generate statistical specification on the datasets where the PTM is pre-
trained. RKME guarantees the privacy issue and helps the selection of the PTM in the
deployment stage.

choose the model with mznzmum kernel-space distance

()
P
0 © Compute L f 5 {o¥ ~ed @
h @ RKME Y, > o0 &
° — 5 ° o
N o @)
f3 P (@)
Oﬁ e O O st fec
(f1,®1) Em $ Reuse f; because of
N pirical KME of - ’ .
f A Compute o, ! Models (disagree on many areas) . testing data in RKHS minimal distance in RKHS
A\ A pload 1, Py :
RKME (f.z7 (1’2) Unlabeled testing data
A . of the current task
(f2, P2)
(fiia(:[’s) (f o ) 8 @) o
’bb J3s 3 O O O A A
\)Q\o Oo Ax
Compute Learnware pool L |
fS . RKME €arnware pool
> ‘133- Specifications denoted by  Specifications denoted
a O O contours in feature space by points in RKHS _
Generate a sample set to Learn a selector on Select pre-trained model

Training data & pre-trained RKMEs in feature space Lealrnware_fpoo! mimic the testing distribution the mimicked sample to predict each point
models of three solved tasks denoted by contours (model + specification)

upload phase: model specification construction deploy phase: model selection based on specification

Xi-Zhu Wu, Wenkai Xu, Song Liu, Zhi-Hua Zhou. Model Reuse with Reduced Kernel Mean Embedding Specification. TKDE. 2023.
Peng Tan, Zhi-Hao Tan, Yuan Jiang, Zhi-Hua Zhou. Handling Learnwares Developed from Heterogeneous Feature Spaces without Auxiliary Data. [JCAI 2023.
Jian-Dong Liu, Zhi-Hao Tan, Zhi-Hua Zhou. Towards Making Learnware Specification and Market Evolvable. AAAI 2024.



Discussion: Semantic/Rule-Based Methods

Task Application Structure ®*®

My task is to classify the

images of birds and dogs. Classification NLP LSTM

=
@?7‘
_} @)\l Classification Vision CNN

»_ w

. Regression Tabular Linear
Retrieval 2 -
2 - Model Zoo with Specification

« Can be easily adapted to various
domains and tasks by simply tagging
models with appropriate semantic labels.

* The effectiveness heavily relies on the
accuracy and comprehensiveness of the
semantic specifications provided.

I

I

» This flexibility makes them suitable for Inaccurate or vague descriptions can lead |
I

1

dynamic environments where new types
of tasks frequently emerge.

to poor performance.
« Manual semantic tagging becomes
impractical as the number of models grows.



Metric-Based Methods

Main idea: define the metric to represent the fitness between models and datasets. Also known as
“transferability estimation”.

@(tract IIIIIIIIIII\

. . EEEEE
Features & Logits ™" 1 o Reduce the burden of multiple

0
r 1 A A4 r 1
VP

backwards to one or more forwards.

LEEP [Nguyen et al., ICML'20], LogME [You et al.

\ Forward each Pre-trained Model ICML'21], GBC [Pandy et al. CVPR'22], etc.
— g
~
/]\
)
e
:.Ti Yuhe Ding et al., Which Model to Transfer? A Survey on Transferability Estimation. CORR 2024.

Yihao Xue et al., 4 Review on Transferability Estimation in Deep Transfer Learning. TAI 2024.



H-Score

H-score estimates the transferability of learned representations from a source task to a
target task. The score characterizes the discriminative power of the features for the target labels.

ngxe,t;l;lm h(x) P=TA;IV¢¢(x) H(P) =tr (COV((P(x))_lCOV(Ep(xly) (G 1y ]))

regularization of global  inter-class feature variance
feature variance

 If the features have large distances among
classes, meanwhile be similar within the

same class, then ¢ preserves classification
information.

 Directly utilize ¢ in calculation, thus H-
score also works for unsupervised PTMs.

Yajie Bao et al., An Information-Theoretic Approach to Transferability in Task Transfer Learning. ICIP 2019.




H-Score

H-score estimates the transferability of learned representations from a source task to a
target task. The score characterizes the discriminative power of the features for the target labels.

target data PTM h
(x,¥) h(x) = w'é(x)

extracted features ¢ (x)

The intra-class feature variance needs not to be small.

The re-trained prediction head can handle this.



NCE

Negative conditional entropy (NCE) between label sequences of source and target tasks
reflects the information required to predict labels of one task based on the knowledge of
another, thereby providing an estimate of task transferability and hardness.

target data PTM h
— T N N

(x,9) A(x) = wTg(x) NCE() = -H 1) =~ ) p@.2loglp( | 2)

// need not in the same  indistinguishable ye’g,z'ez ,
e source class instances the purity of source class bin z
 If the purity of the source model classes is high,

h o which indicates that the features are
el O © 6 06 © sufficiently distinguishable, then ¢ preserves
O 6 © ¢ © © classity information.

* Also measures the mutual information
between y and z since I(y;z) = H(y) —H(y | 2)

extracted source model and H(y) isn’t affected by the source model.
prediction h(x)

bins {z; } of source model classes

Anh T. Tran, Cuong V. Nguyen, Tal Hassner. Transferability and Hardness of Supervised Classification Tasks. ICCV 2019.



LEEP

Log Expected Empirical Prediction (LEEP) can be treated as a soft version of NCE, which utilize

source prediction probabilities instead of hard labels.
soft source label prediction

N
target data PTM h LEEP(h) = lz log z p(y; | 2)p(z | x;)
(x,y) h(x) = wTo(x) Ng "\&
the purity of
/ source class bin z
[ 4

NCE() = —H(y12) == ) pO2loglp(y | 2)

VEY,zEZ

the purity of source class bin z

* The metric is based on the alignment of the
model’s predictions with the target task’s

bins {z; } of source model classes requirements

* The soft probabilities may contain information of
h?l(x) = 0.7,h%2(x) = 0.2h*(x) = 0.1 prediction confidence. The lower the confidence,
the worse the transferability.

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau. LEEP: A New Measure to Evaluate Transferability of Learned Representations. ICML 2020.



LogME

LogME (logarithm of maximum evidence) measure correlation between features and

outputs. AT g a1
P v~ N fi, A7) Ignore the prior distributions, the objective can be
simplified to o .
maximize feature correlation
T
—loglA| —y"y + (F'y) A=*(F"y
logp (y | F) = 2( i)

T Ce .
A=F'F minimize feature variance

* Need to solve an optimization problem on target

e F € RN x d is the extracted features on the target task data. The computation cost is higher

L(a,B) =logp (y|F,a,B) * Share the similar principle of H-score. Introducing
n d n the prior distribution parameters can improve
) logp + 2 loga — 2 log2m generalization.
B a . 1 »  Work for both supervised and unsupervised
) IFm — yl| — omm=y log |4] PTMs. Restrict to be applied on target tasks with

real-valued output space.

A=al + fFTF, m=pBA 1FTy

Kaichao You, Yong Liu, Jianmin Wang, Mingsheng Long. LogME: Practical Assessment of Pre-trained Models for Transfer Learning. ICML 2021.



Metric-Based Methods

Design metrics from different aspects.

GBC measures the overlap ratio among different | Utilize the matching degree of attribution
classes in the source model embedding space maps to define the metric.

Source wmw arget GBC overlap
models = data ranking
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Model Transferability

00>

1101
l

@b o R

d(ml-, m]) =

N -
p : [ J
2= COS_sim ( k,Ak)

Calculate the pairwise distance between models
based on the similarity of their attribution maps
Identify the source model with the smallest
distance to the target in this model space.

Target data embedded in
source feature space

Utilize the PTM to encode the downstream task’s data,
and evaluate the separability of per-class instances
considering inter-class and intra-class information.

Michal Pandy et al., Transferability estimation using Bhattacharyya class separability. CVPR 2022.
Song et al., Deep Model Transferability from Attribution Maps. NeurIPS 2019.



Selection of Vision-Language Model (VLM)

N

~

W
(1)

texts VLM 1 Ij|'>
: . v
Zero-Shot Classification ® IEPI

VLM 2

_____ / \V/

I’ 13 ] \| z

14 D()g b4 ﬁ : Dog :_>
| “Cat” I

______

\ﬁ

kel

kel

N

&1
gy ton_ %:I Y,

JIfL  Algorithm

VLM models (e.g., CLIP) have strong zero-shot

image classification capabilities
Select the best VLM from the model zoo
solely based on texts



Language-Only VLM Selection (LOVM)

//> A loyal guard dog \\
standing watch over their
owner's property.

» A faithful guide dog
helping the visually

Extract representations of After describing the target

target semantics based on a category using language models

like GPT, extract representations

—— o e e e ——
o o o o o o .

given VLM model impaired navigate the
world. of target semantics based on a
‘e » A friendly dog playing )
b C13881f1ter ¢ ‘o with their favorite toy. _s glven VLM model
ased on texts R

\ B EI / However, there is a gap between representations
| | in the text and image spaces generated by VLMs.

4 Text---~_ ) E

ModelGPT: convert the cross-modal matching problem between :' 10

// \\ \\ ,/ 8

VLM and tasks into similarity calculation of in the text space. / OO ] 6

O ,

\I;ﬁége J

0 10 20

Orr Zohar, Shih-Cheng Huang, Kuan-Chieh Wang, Serena Yeung. LOVM: Language-only vision model selection. NeurIPS 2023.
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VLM 1

Test

On

SWAB: Bridge the Modality Gap

Estimate the gap vector for target class

Gap Vector

-

. 0"
\OO

\_z

Text
) gm 1

—-\
7

*\
! 1
! 1

’

~

\_ Imagé\-/ Y,

Target task

“cat”

|:> f r Text )
\ O’/-ng
\_ Image - J

|:> 4 Text _ \
,OO ‘\ - /
A ?/ 9ImN
\_ Image Y,

Chao Yi, Yu-Hang He, De-Chuan Zhan, Han-Jia Ye. Bridge the Modality and Capacity Gaps in Vision-Language Model Selection. NeurIPS 2024.

A

Open-Source
Task’s Gap Vectors

- s _
gm,l
S _— :

Gm_

S
_gm,kg_

Rectify the embeddings of texts

Add 'OOOOO tGm2
- \9\\/5’“\

+ ! ’
Gap Ym 1

Text Samples

~

Target Task’s
Gap Vectors

@76 | mp™
"[ JoN ] >

age

§amples

Predict the ranking based on rectified embeddings



Result on VLMs Selection

text-based selection methods

w/o considering the modality Gap

Methods | H-Score NCE LEEP LogME || ModelGPT SWAB
R5(1) 0.165 0270 0330  0.200 0.457+0.006  0.534+0.023
(1) 0.000 0.087 -0.014 -0.029 0.197+0.016  0.260+0.017
Rs+7(1) | 0.165 0.357 0316 0.171 0.65440.019  0.794+0.010

The model zoo contains 43 VLMs (including
CLIP, BLIP, BEiT-3), and the downstream tasks

include 23 zero-shot classification tasks.

(RN50x64, openai) (RN50x64, openai)

Animals Remote Animals Remote

Medical
5edca

Traffic Universal Traffic Universal

Ground Truth Rank SWAB Predicted Rank ModelGPT Predicted Rank



Metric-Based Methods
@(tract EEEEEE ||||\ e e e

® Features & Logits |Dj|:[|:||:]| g - Provide a quantitative measure of suitability, making

i comparisons between models straightforward and reducing
! subjective bias.
'+ Adapt well to different types of data and tasks by adjusting !

T
4 A4 A 4
@ C@) C@D the metrics to reflect the specific needs of the target task.
_________________________________________________ J
A A 1

——————————————————————————————————————————————————

\ Forward each Pre-trained Model - The effectiveness heavily relies on the appropriateness and.
— _

I
—— : robustness of the chosen metric. !
N I« Some metrics, especially those involving BP or complex :

; statistical analyses, can be computationally intensive, :

! :

; |

I _h limiting the use in resource constrained environments.
L -
L

71
Forward-based methods require forwarding for How to select PTM e_ffiCientIy when

each pre-trained model

which still incurs significant overhead! & the model zoo is |arge?



Learning-Based Methods

Main idea: automatically learn the specifications in a data-driven manner

Automatically learning the specifications. Project models, as well as datasets, into the same embedding space,
where the retrieval process can be easily done by distance calculation in the unified space.

I

| N 7 7 7 7
| | | B | Gk |

| | |
- - [

—_— —_— —_
>

-> >
>

generalize N
J 3

Sparse historical PTM-task interaction Estimate the ability of the PTM on unseen tasks



Model Recommendation

Assume fixed set of models and tasks. Given known performance of task-model pairs,
utilize collaborative filtering to predict the unknown ones.

walk running

Rating —— P T
B accunsy) BS ER

———\/Gm—mm—.  Of@amodel ——ySam—

on a task . -
/ Probe

stand \ all actions

/ Ratings ?: ‘P
/ { 0.6 » Probe .
Model> Y 7| set :
(classifier) 2 :
) ? . |
Predicted = Model Library :
Ratings  LL- (Detectors) |

Task Unsupervised Hyper-Training Phase : Training Phase

Pyry Matikainen, Rahul Sukthankar, Martial Hebert. Model Recommendation for Action Recognition. CVPR 2012.
Yu-Xiong Wang and Martial Hebert. Model Recommendation: Generating Object Detectors from Few Samples. CVPR 2015.



Task2Vec

Task2Vec involves passing data through a probe network to generate a task-specific
embedding that captures the complexity and characteristics of the task.

hg probing I
/ model

» FIM >

(z,y) € D
N

1 T
FIM = — Z-Z_;WG log ho(yi|zi)][Velog he(yi|x:)]

Fisher Information Matrix, measuring how
sensitive/surprised when the model sees the task.

® Actinopterygii (n) Insecta (n) ® Reptilia (n) Neckline (m)
Amphibia (n) ® Mammalia (n) Category (m) ® Pants (m)
Arachnida (n) Mollusca (n) @ Color (m) Pattern (m)

® Aves(n) ® Plantae (n) Gender (m) Shoes (m)

® Fungi (n) ® Protozoa (n) » Material (m)

Task Embeddings Domain Embeddings

Alessandro Achille et al., Task2vec: Task embedding for meta-learning. ICCV 2019.



Model2Vec

Given a set of task embeddings, for PTMs f,, f5, ..., fx , conduct metric learning to obtain
their embeddings:

...... _}

t1 t2 tn my = (ty + by) =
learnable @ (t, + b,)
parameters @ ---

Training objective @ (ty + by)
—logp (m | d(t,mq),d(t,my), ..., d(t, mK)) Restrictions:
* Need a strong probing model.
Metric learning: utilize the infoNCE loss to maximize +  The embedding space characterizes only
the likelthood of the optimal task-model pairs task information.

Alessandro Achille et al., Task2vec: Task embedding for meta-learning. ICCV 2019.



Could We Reduce the Selection Burden?
Meta-Representation

- mm mm mm mm omm omm mm omm omm ommom

I Learned | Learned +§%{_
" Repr " Repr. D < A
E . é {_%{_
Xl IR 9
' ' ' Model Z
pr— odel £L00
Tasks Lﬁ_,_.J.:' I‘-*'J 1 J | * w/o forward
Task Representation Model Representation
Just need one-time forward Learn model representation,
of a general encoder one for each PTM

Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, Han-Jia Ye. Model Spider: Learning to Rank Pre-Trained Models Efficiently. NeurIPS 2023.



Mapping PTMs and Tasks into a Space

Model Reprs. ™ Model-Task Space
t/’ ------------ S

/' Random Init. & Learnable
A A o .
=\ \‘
N " A A
Task Repr. /
4 i N o O
o Y S
™ ]
- General ~
\_ Extractor )

Using historical interactions between PTMs and seen tasks to learn a selector,

and apply it to unseen tasks and new models.



Model Representation

Model Reprs. ~N

* Random Init. & Learnable

RERE

Model Representation
0,, € R?

Learning model representation in a supervised learning manner
learnable parameters randomly initialized and optimized through the training process

68



Task Representation

Task Representation

“”){myf—cn > w(m»-ﬂwzcn}

(zi,y:) €T

ce[C]

Using a general encoder y
~Task Repr. and extracting task repr. with just one forward pass.

F;?,—}IE—:.@

General
Extractor

* [Optional]



Learning to Rank

Model-Task Space

Model Reprs. ~
* Random Init. & Learnable P "
[ = A ~ % Model-task Representation
/ 17 Q A Im O Y P
E ’ A o — 10 °T 6m, 1 (7))
J L ‘:
. J . A |
~Task Repr. project to s A 0 {
Tk - R J=-=~=——'-'- -
= GlenEeraf @ ——
\ Extractor Learning tO Rank
sim(@p,, i (7)) = FC (transformer (z) [0])

m(gn Z Lrank (£71 = {sim(6m, p (%))}f:1 at’/})

T;~D
The ranking ground-truth is approximated via the

rank-aggregation of various forward-based methods.



Model Spider

Model Spider: Learning to rank pre-trained models with model and task representation

Model-Task Space

{,Mudel Reprs. N —

* Random Init. & Learnable > -
. Model-task Representation

i

S . A ,
E E E — Qﬂ‘% R S (&

~Task Repr.

4> IE > g l
> 2 =>u T

L Efj;iﬂ, ( PTM-Specific Task Repr.*
Re -ranking w/ Efficiency-Accuracy Trade-off
h - *% @ » Extract the PTM-specific task representation
' Selected PTM » Replace the general task repr. u(7) via the specific
__________ one u,,(7) when calculating the similarity with the

0., of the mth PTM

Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, Han-Jia Ye. Model Spider: Learning to Rank Pre-Trained Models Efficiently. NeurIPS 2023



Results on Image Classification Tasks

Correlation ()
& & &
N =)\ J

|

=
~

A\

AR

MODEL SPIDER

(Ours)

1x

I LI I | I
Sx 40x S0x
Time (multiple of acceleration)

Model $Spider:
Efficiency-Accuracy Trade-off

The circle sizes indicate the
memory footprint. Red circles
are our method with different
values of the number of PTM-
specific features k



Large Language Model Routing

LLM routing is a learning-based decision mechanism that dynamically selects or combines models
from a candidate pool M = {M,, ..., M} } for each input x, in order to achieve a controllable trade-off
among output quality, latency, and computational or monetary cost.

LLMs @ Q% = o0 (= 88

1
/

vl

Exams  Language Knowledge Comprehension Math Education Healthcare Finance  Physics




Large Language Model Routing

LLM routing is a learning-based decision mechanism that dynamically selects or combines models
from a candidate pool M = {M,, ..., M} } for each input x, in order to achieve a controllable trade-off
among output quality, latency, and computational or monetary cost.

Formall ter | FLMS
Oorma , d router 1earns a h
% N\ ao

policy p(M;, | x), which can be 89 i oD
instantiated as a hard decision

(e.g., Top-1 or Top-K selection) QOQ il @

or a soft allocation (a

probability or weight

distribution). I Select the appropriate

At inference time, the system LLM for the current query
invokes the selected model(s) User Instruction X;

..............................................................................................

and returns either a single
output or an aggregation (e.g.,
weighted fusion or re-ranking).

. Inacage, there are a total of 10 heads and 28 legs. :
> Calculate how many chickens 4 and rabbits }€ are?

..............................................................................................
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$0.002

LLM Routing Benchmarks

$0.004

A\ [claude1]

$0.006

A\ [claude 2]

@ |GPT-4

RouterBench is a standardized evaluation

benchmark designed specifically for multi-

LLM routing systems.

= It contains over 400K precomputed model
inference records, covering the outputs of
multiple LLMs on a wide range of tasks.

= The data is collected from dozens of tasks
across multiple domains (e.g., reasoning,
QA, math, coding, RAG, etc.) and from 11
representative LLMs, including both open-

$0.008 $0.010

Total Cost »

source and API-based models.

Qitian Jason Hu, et al. RouterBench: A Benchmark for Multi-LLM Routing System. ICMLW 2024.



Metrics

By evaluating routing algorithms on a benchmark, we can obtain a deferral curve that
characterizes the trade-off between cost and accuracy. Based on this curve, three evaluation

metrics are typically derived.

Peak Accuracy

Accuracy

A (Cpy ay) a,, the best performance that router can

achieve

(C3, al)
[EE) |:> Query-Normalized Cost

QNC=%, the minimum relative cost required to match

metrics :
the performance of the most accurate tested LLM

» Total Cost \ Area

The area of the curve

Isaac Ong, et al. RouteLLM: Learning to route LLMs from preference data, ICLR 2025.



Relationship to Mixture-of-Experts

Both Routing and MoE share the idea of allocating inputs to specialized units.

Routing MoE

The “experts” are complete, standalone
Granularity pretrained models that may differ in
architecture, scale, and training data.

Experts are usually parameterized sub-
networks within a single model

LLM routers are often trained with indirect | MoE gating is typically trained end-to-end
signals such as offline evaluations, reward | together with the backbone model using the
models, or user preference data downstream loss

Training
paradigm




LLM Routing

Learn a mapping from query features (extracted via Word2Vec, BERT, LLM, etc.) to the target PTM.

Phase 1: Router Data Preparation

DatasetName, Index, Expert, Similarity
aiz-arc,1,Fox-1.68,0.6041
pubmed,2,Biomistral-7b,0.886
gsmBk,3,Qwen-7b,0.842

Instruction
Datasets

1 | Datasetiame, index, Eperta, Expertz, ... |
S| ai2-are,1,0,641,0.082, ...

Expert
IR . Models - ‘ -
—J @ Expprts @ M.
@ QL
I Dataset Router
metrics Train & Test
. J@ -. > Dataset

(e.g., snmllan(y usmgsoftmax]

‘]

B

&
;:'
n' ; &

Q)
'

Phase 2: Router Training

@ Classifier

Similarity Search

Embedding Model

BOW / Word2Vec

Foundatien Medel Embeddings
_— >

BERT

Phase 3: Router Deployment

°0 Expert Response
User .y
User Query

>
> Router

Predict & Query Expert Expert Response

\;; Qwen QA
! misTRAL
& deepseek h A
en

Expert Models

Prompt expert models using instruction datasets.

Collect performance metrics and create expert dataset with all metrics.

Select metric for router training and testing and scale it to probabilities.

SO0

Prepare router's final training and testing datasets.

O
O

Pass instruction data through embedding model.

Fine-Tune / Train router's classifier on the embeddings.

Deploy trained router model.

Submit user query to router.

SO0

Router predicts expert to execute query.

Router replies expert's response to user.

Implement the “router” with
common “classifier”, such as

¢ MLP: learn a parametric
mapping [Stripelis et al.,
EMNILP’24]

e KNN: retrieve LLM based
on the historical query-

LLM results [Stripelis et al.,
EMNLP’24] [Li, CoRR’25]

* Kmeans/NCM: learn
multiple centroids for a

cluster [Srivatsa, Maurya,
Kochmar, ACLW’24]
[Jitkrittum et al., ICLRW’25]
[Zhang et al., AAAT'26]
[Zhang et al., DAT'25]

Dimitris Stripelis et al. TensorOpera Router: A Multi-Model Router for Efficient LLM Inference. EMNLP 2024.
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EmbedLLM

EmbedLLM trains an encoder—decoder model to learn a low-dimensional embedding for each
LLM that reconstructs or predicts its task performance.

Predicted vs. True Model Accuracy on MATHQA

e Predicted Accuracy
pas{- """ ¥ =X
>
L] L ] L ]
Models Embedder Model Linear Downstream { o0 PR
Network Embedding Classifier Tasks 3 *s
o - .
Pe- <T oas e . x
(= ® e
%ﬁ E . Pl D |
</ Q (0.99, 7.95 ..1.36, -8.35] : .
o Model Routing § o ¢ & * s @
A\ o o 3.68,-2.46 .. 7,53, 9.25] o ' e ™ 1
: o o) o) et a . ¢ ,f"- ‘
o 0 o y=wz+ 0.25 . .
o o .
Q0 b [-862,6.39 .. 043, 552] Henchran
~ 0204
= [2.58,-452 .. -467,3.71] Accuracy : : . . . :
h Estimation .20 0.25 030 0.35 a0 045
Actual Accuracy

Train a lightweight router that takes the problem features and the
model embeddings as input and selects the most suitable model.

Dataset Size

The learned embeddings are reusable across tasks,
and even a simple linear classifier on top of them
outperforms KNN baselines.

A linear classifier has limited expressive power

Algorithm
TK | 5K | 0K | 15K | 20K | 25K [ Full 29K) : .
KNN [ 0.6372 | 0.7078 | 0.7107 | 0.7128 | 0.7143 | 0.7146 | 0.7152 and can only represent linearly separable decision
EmbedLLM | 0.6443 | 0.7331 | 0.7362 | 0.7378 | 0.7390 | 0.7394 | 0.7409 boundaries.

Richard Zhuang, et al, EmbedLLM: Learning Compact Representations of Large Language Models, ICLR 2025.

Hard to generalize to new PTMs.



Capability Instruction Tuning

Capability Instruction: c™ + x; + p

User Instruction x;: "10 heads and 28 legs, How many Eg and §) ?"

- . . 10 heads )
. () o (] “ .
Capability Instruction: mel achieve 7#5% on Psychology, 55% , 35% N€ -4 * 28 legs How many ES and @ M/__/
Yy R/_/
Capability Representation c™ User Instruction x; Performance Inquiry Prompt p

Ed

Based on model descriptions and current task descriptions, estimate the model's capability on the current task

Capability Representation c™ [User Instruction x; Performance Inquiry Prompt pj

N prmm——
—
:a“m 'o.- ~ p
Pmo :
= < @
'i-----------------> E Q_ g n / r-D‘
T =2 - o (o]
E q = "n - 3 ' E :
H ~ P 3 -~
el 3= > (3| > || 2
< . e U - H
............ o )
=

Implement the selector in the form of an LLM. Using instruction tuning to enable a general-
purpose large model (Phi-1) to learn how to perform model-task matching.

Yi-Kai Zhang, De-Chuan Zhan, Han-Jia Ye. Capability Instruction Tuning: A New Paradigm for Dynamic LLM Routing. AAA12025.



Accuracy (in %)

Dynamic Selection of LLMs

As time progresses, new LLMs are continuously released, and the model zoo is updated and expanded

A
Real-world Model Selection with Latest LLM Release
~74.57%
75 71.67% Meta-Llama-3 (70B) Random Selection Current Best-Performing BGE-Reranker RoBERTa + MLP =o-Model-SAT (Ours) I e e e e e
S [——— S
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65 62.12% Meta-Llama-3 (SB) o ——
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55 e —t
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The selection method can integrate the updated model zoo, select a better large model
for the current user input, and achieve or even exceed the capabilities of the current
optimal model across various tasks with fewer resources



GEMEK

LLaMA-3 (Th)

.00

Task Query LLM Performance Cost

Alpaca | &4 LLaMA-3 (Th) 019 1038

Alpaca | @p | LLaMA-3(70b) 0.21 467.1
s

GSMEK

Q

* Represent tasks, queries, and LLMs as nodes in a heterogeneous graph; edges encode
historical interactions and performance/cost relationships.

* Apply a GNN to learn embeddings for nodes and edge features that capture contextual

Graph

GraphRouter

GraphRouter constructs a heterogeneous graph and predicts edges to select LLMs:

'Train Stage
]

¥ ' L-th NN L '
Quu%iymic i : (\M s -ﬁif’]' ayer E
- [] L —
) ~ LLM \lrni%}[ observed) : : I:,r' ¥ :
. ! el w Concat '
{ - v ) '
I B v N i
: ' (L) (L) ! .

| | i .+ Model complex relational
L L]
B L]

L 4
Dt

O ! Softmax LLM.!
! product' e ™
o ™

structures among queries,
tasks, and models.

* Require constructing and
maintaining a global
graph over the entire
training dataset, whose
size and computational
cost grow rapidly as the
dataset scales.

relationships among tasks, queries, and model capabilities.

» Perform edge prediction to estimate the expected performance and computational cost
for a given query-LLM pair, and use these predicted attributes to select the LLM that

best balances performance and cost.

Tao Feng, Yanzhen Shen, Jiaxuan You. GraphRouter: A Graph-based Router for LLM Selections. ICLR 2025.



ICL-Router

|CL-Router is a two-stage in-context routing method.

_ - * Encode each query into a vector representation
. Stage 1: Query Reco"s""‘;"o" Training and jointly train a projector and LLM-based
P router to reconstruct the original query from its
Why is zero divided Un

by infinity weird? L ] R e i
v . - ' vector
Reconstruction Loss * For each candidate model, profile its

T
U *Tiﬂ;logp(%‘f) |0 vn) performance on a fixed set of queries and
. __ = . .
1 vy oy v convert these into in-context vectors that
| represent model capability profiles.

Embedding 3 —*

00
00 Model

’

Why is zero eee 7 . update aproj » Brouter

~=

Stage 2: 1CL Model Routing Training * Train the router to take the query vector and a

o ode ! Py Modelt model’s in-context vectors as input and predict
n-context Exemplars Capability Profile qn
Isplawile? g v whether the model can correctly answer the
azem Kadrl. .. g 5 . .
A car covers.. e et e query, then select the model with highest
whaisiogeet.. oslislilo] / l predicted success probability.
L X X J eee

(=™ |, Classification Loss
~ | ' 4 —log P(yt,n | (Pta Qn))
A

Compute the product... mu
where i=v—1 x x

00O Embedding

Qo Model

update '9proj . Orouter

Chenxu Wang et al. ICL-Router: In-Context Learned Model Representations for LLM Routing. AAAI 2026.



Analyses from the Perspective of LLM Cost

)

Does there exist an integer n such that n* + n + 41 is a composite number?
If yes, please provide the smallest non-negative n as evidence.

/ B™Microsoft

Phi-2 (=2.7B)

Direct Output:
No, this expression is
always a prime

/ HMISTRALMZT Mistral 7B \

o Instruct (=7B)

Self-Consistency
Output:
Sample1:n=41;
Sample2:n=40;
Sample3:n=41;

Majority vote:n=41(2/3);
Final answer: Yes,n=41

Correct: X

number.
Correct: X
\_Length: ~6-10 tokens /

\Length: =25-40 tokens/

/{aQwen25 Qwen2.5-14BN
"~ Instruct (=14B)

CoT Output: Substitute
n=40:n? +n+41 =
1681 = 412 (composite);
Classic results show
primes for0 < n <
40—smallest n=40

Correct: 4

-

@) crra1 GPT-4.1

ToT Output: LayerO:
Search neighborhood of
n=40—Branch
A(n=39—prime). Branch
B(n=40—composite,
candidate
smallest)—Conclusion:
Yes, smallest n=40
Correct: 4

\Length : =40-60 tokeny

\Length: =30-130 tokens/

LLMs have different costs when solving complex tasks.
How to balance model capability and cost when selecting LLMs?



Fusing Model & Data Representation

‘Model Representation

- e e e e e e e e e e e -,

- Inherent Properties of Models:
Including model publisher, name, architecture, number of layers, parameter

count, training details, and Hugging Face information, etc. Cost Representatlon

\/ \ I
~ < -
~a

- Cross Features____
''''''''''''''''''''''''''''''''''''''''''''''''''''' i Recommendation

- Capability Distribution of Models:
' Including offline level: evaluation accuracy released by the model; online level:
. accuracy evaluated using the "bridge" core set

- ——— o ——— ——————_/

-Top -K nearest neighbor

,Data Representatlon ______________________________________________ |tra|n|ng data of user querlesl — P SyStem >
' - Semantic Embedding of Data: including data features and . )

. Using different general text encoders (e.g., GTE, Qwen, and RoBERTa) to imodel performance, etc. ! v Evaluation

i extract semantic vectors Rl S e - s

' - Meta-Dimensions of Data: J, -

i Meta-information includes answer difficulty, reasoning level, content diversity, —_

temporal stability, and domain professionalism, etc. E

Transform the model selection problem into a representation-based “model
recommendation” problem, and learn how to rank LLMs under different costs

Yi-Kai Zhang, Shiyin Lu, Qing-Guo Chen, Weihua Luo, De-Chuan Zhan, Han-Jia Ye. Let the LLM Stick to Its Strengths: Learning to Route Economical LLM. NeurIPS 2025.
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Fusing Model & Data Representation

Oracle (w/ low cost & high perf.)

LLM ZOO LiveBench
I =) IMKIN
Qwen3-4B ! 7071 .--"’ee— 4B (Thinking) o s i Qs 1
’ ! ] B (Thinking}) Avengers
Qwen3—88, ! g0 AB (Thinking) Q
: @© QAE 0B-A3 53
Qwen3-1 4B, . g . Q outerLLM
+ 50 5-R1-Distill-Qwen-148
Qwen3-30B-A3B | 5% f b
| 5-R1-Distill-Qwen-32B
I 40
two versions w/ :
thlnklng and W/O 1 Avg. Cost (scale x token length)
|
C |
thinking \ Pareto Frontier of
) Performance-Cost
________________ \ LiveCodeBench
v P
60 _.e___--—-—-O q‘lﬁ (Thinking) OSDB-ASB{Thinkin )
§ /%mkmaﬁ {Thinking} DS-R1-Distill-Qwen-328
E 40 // DS-R1-Distill-Qwen-148
€ | 9.9 D
@ 148  30B-A3B
€ 20]{ s

Avg. Cost (scale x token length)

Balance Between Reasoning Accuracy & Cost:

Incorporate prior informat

ion (e.g., cost) as an

input dimension to add manual control options for

model selection

Math Reasoning Symbolic Reasoning

Method #Params GSMBK BBH Mean
4-shot, CoT 3-shot, CoT
Perf. Leng. Perf. Leng. Perf. Leng.
Small-scale LLMs (<10B)
InternL.M2.5 7.7B 74.37 371 68.13 452 65.50 412
Meta-Llama-3 ppguct 8.0B 56.18 273 60.93 399 59.13 336
Qwen2 mgiryct 7.6B 78.92 368 62.92 526 65.22 447
GLM-4 9.4B 79.53 505 74.43 487 68.86 496
Phi-3 gman128x 7.4B 82.34 449 73.94 521 72.83 485
Best-Performing - 82.34 449 74.43 487 7291 468
Large-scale LLMs (~70B)
Meta-Llama-3 ppgruct 70B 83.17 580 81.48 635 75.33 608
Qwen2 mgiruct 72B 88.86 535 82.89 593 76.48 564
Mixtral-8x22B 1nstruct-vo.1 140B 84.31 553 79.54 610 75.68 582
Best-Performing - 88.86 535 82.89 593 79.39 564
—— +LM Routing, . -
Random Selection ~32B 7771 489 7358 | 534) 6982 512
GTELarge ~ 55B 80.52 I 528 § 7437 I 580 | 71.57 554
LR ~ 33B 83.40 I 457 | 73.84 I 532} 70.71 495
Deep & Wide ~ 27B 86.05 g 426 | 7827 | 489 ] 77.19 458
Ours w/ DeepFM ~ 26B 87.87 411 7802 | 495 ] 77.44 453
AFM ~ 25B 86.05 | 4041 7940 g 4761 76.12 440
DIN ~ 31B 87.19 4461 7994 | 5001 78.20 473
[ m—— | T=T] |

Better Accuracy Under Equal Cost



’ (a) Single-round Routing

-

Router-R1

Router-R1 formulates LLM routing as a sequential decision-making problem.

Interleave
’

\ﬁnﬂ’

h

Reason

—
Selected LLM [
#N —

Selected LLM

Que _ Router-R1
v > (Policy LLM)

Information
#1

Information
#N

Represent the router as a capable LLM that alternates “think”
actions (internal reasoning) and “route” actions (invoking
external LLMs).

Train the router with reinforcement learning using a reward
function that combines format correctness, final task success,
and a cost penalty, encouraging both accuracy and efficiency.

Haozhen Zhang, Tao Feng, Jiaxuan You. Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning, NeurIPS 2025.

-

-
T amsssEssss==”

R SR

¥ Question™*: Which film has the director who died earlier between To See Or Not To See
and Prince (1969 Film)?

##Ground Truth®*: ["To See or Not to See”, "To See Or Not To See’|

Response of Router-R1:

<think> To answer the question about which film has the director who died earlier between
To See Or Not To See and Prince (1969 Film), I need to determine the directors of these films
and their death dates. I don’t have immediate knowledge of these details, so [ will need to
consult an external specialized language model to find the required information. </think>
<gearch> LLaMA-3.1-70B-Instruct: Which film has the director who died earlier, To See
Or Not To See or Prince (1969 Film)7? </search>

<info> A very specific question! After conducting research, I found that the 1969 film
"Prince” is directed by Lekh Tandon, an Indian film director. Unfortunately, I couldn’t find
any information on a film called "To See Or Not To See” that would allow me to determine
the director’s name or their date of passing. However, [ did find that Lekh Tandon passed
away on October 15, 2017. If you're looking for more information on "To See Or Not
To See" or its director, | recommend consulting other LLMs or film databases for further
assistance. </info>

<think> Since | don’t have enough information to directly answer the question, I will need
to consult another specialized language model to determine the director of "To See Or Not To
See" and compare their death dates with Lekh Tandon. </think>

<search> LLaMA-3.1-70B-Instruct: Which film is called "To See Or Not To See" and who

HP U LSRR, T YO X LFLJSNNR, | NP, R —————— EpE | O, PR . I R B S I B S PR

Multi-round routing allows the router to iteratively
perform internal reasoning, dynamically choose

which LLMs to query, and aggregate partial outputs

over several steps.

Enables the system to handle complex, multi-step
tasks more effectively, refine decisions based on

intermediate results, and balance performance with
computational cost.




Selection of Time-Series Forecasting Models

/ Model &
Single- %@g ﬁ@e @g ~@§* Multi-channel
domain

Models ‘. )

; ;
| Be !
| g iy .‘.’
] o e
] @i’
[ . i
1
H

— g
® 0 & T :

Unseen Domain

Power  Healthcare Traffic ~ Weather Prediction
Slng Ie_ W W \/\/ﬂ k Sequences /
_channe_l Zero-Shot Forecasting
Time Series

Ting-Ji Huang, Xu-Yang Chen, Han-Jia Ye. SeqFusion.: Sequential Fusion of Pre-Trained Models for Zero-Shot Time-Series Forecasting. CoRR 2025.



Selection of Time-Series Foundation Models

- prediction 1

I

I

1

|

I

1

P |
:

smgle :

-7 i model ;
- |
prediction 2 :

2 :

I

3 :

I

1

|

I

I

I

STA'gf. one . precompute zoo repr.

TSFM1 @

model zoo repr. library

I

|

:

! (@)

| TSFM2 g i y C

! summarize 77} -E B

I —) ..? 'g t‘; similarity

: TSFM3 preference @ CRE-B- measure TopK |/\N\

Y . T £ b~ ensemble

I TSFMs I O )

| (future) L ~=JES [o)

:_ __________________________ o | model rank

new task ‘W" STAGE tww : select for task

1. Train a general representation model (General Extractor) to 2. Based on and sequence meta-
generate sequence meta-representations, using sequence representations, perform of models

reconstruction self-supervision + transferability loss for training. according to their domain adaptability on the current sequence.

Hao-Nan Shi, Ting-Ji Huang, Lu Han, De-Chuan Zhan, Han-Jia Ye. One-Embedding-Fits-All: Efficient Zero-Shot Time Series Forecasting by a Model Zoo. CoRR 2025.



Selection of Time-Series Foundation Models

GIFT-Eval experimental results, including 23 large-scale time-series datasets and 97 configurations

| Single Model Prediction | Ensemble Prediction
Metric \ Chr.bT ChrbM  ChrbS ChrbB Moi.S Moi.B MoilL. TFM.1 TFM.2 Vis.B Vis.L VissH SunB \ All-13 Top-3 Z.C.(ours) Top-5Z.C.(ours)
sMAPE | 0.452 0.446 0.448 0.441 0488 0474 0474 0474 0.452 0513 0.512 0511  0.430 | 0.445 0.437 0.431
Rank 6.856 5.753 6.113 4856 9753 8371 8.031 8.598 4949  11.381 11.258 10.979 4.845 | 5.062 3.688 3.158

The time-series model zoo includes the 0.48

following foundation models: 0.47-

Chronos (Chr.bT/bM/bS/bB), Moirai 0.461

(Moi.S/B/L), VisionTS (Vis.B/L/H), 55045- |

TimesFM (TFM.1/2), Sundial (Sun.B). L At comtE,

0.441 —=— Latest Selection

Time-series foundation ZooCast Tonl (Ot
models emerge 0.431 =—©— ZooCast-Top3 En. (Ours)

. Vis.L Vis.H ChrbT ChrbM  Chr.bS ChrbB TFM.2 Sun.B
dynamlcally — (2024-08) (2024-08) (2024-11) (2024-11) (2024-11) (2024-11) (2024-12) (2025-06)



Learning-Based Methods

Main idea: automatically learn the specifications in a data-driven manner

7 7 | 7 I ] I
| ol | = 5 | b |
generalize
D =™
/\-/
Ca |A
e g g g g P —— R ———

« The effectiveness heavily depends on the quality,
diversity, and the scale of the training data.

« Automate the specification learning process. :
« The process of training and deploying these systems, |
I

I
. * Usually achieve better PTM selection ;
: performance. !
: : especially for large models, can be resource-intensive,
: ; requiring substantial computational power and time.

! 1

« Enable scalability by adapting to new models
and tasks in an end-to-end manner.

________________________________________



Related Topics



Multi-Level Selection

Rather than treating each PTM as a whole, model reuse can operate at a finer granularity by
assembling models from components such as network blocks or parameter-efficient tuning modules.

Queries and targets over different levels and granularities.

Task-level

Qs

Instance-level

Q—

Layer-level

Q—o

Token-level Module-level

PTM-level >
Q— &

Model Zoo



Model Assembly

Enable fine-grained model selection targets, where reusable parts are identified and
recombined to build models tailored to specific tasks.

Model LEGO

(a)ﬂ ®) ﬁ

e
Source 1

ransforr
U Equivalence Set I t//]

Source 2
L J (% m_kew 3] ( Transform;r‘ layer 3 Cs/\(ca) i (C(Z)/\(C(I)
— Trans? 7oy v

|
Source 3

Conv-BN-RelU 2 N
(" Conv-BN-RelU T ] [ Transformer layer 1 |
T

upervised - i D00
=& Sup 9p Self-supervised Equivalence Set 1

Model Zoo Network Partition

—
(O and (J denotes the most
relevant feature maps or par-

ameters to the specific task

i

i i

i

a1[+1 azl+1 “QHI E |
(a) Contribution Aggregation (b) Component e H s : 650 sos

i i

Disassembling Assembling
Stitch Tayen process process
Network Reassembly
___________________________________________ 1 e e e e e e e e e = = = = = = o = e = o = |

Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, Xinchao Wang. Deep Model Reassembly. NeurlPS 2022
Jiacong Hu et al. Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks. NeurIPS 2024



Multi-PTM Selection
Selecting a set of PTMs may not equal to selecting top-K PTMs.
00 » |00| @ -
OO0

0e O

— Model Zoo — — Model Zoo —

(a) Single PTM Selection (b) Parallel Multi-PTM Selection

00| ., o
oy

Model Zoo — Also depend on the usage
of multiple PTMs.

Obtaining the ground-truth of the model set is a
combinatorial optimization problem. (¢) Sequential Multi-PTM Selection

Andrea Agostinelli, Jasper R. R. Ujjlings, Thomas Mensink, Vittorio Ferrari. Transferability Metrics for Selecting Source Model Ensembles. CVPR 2022
Vimal K. B., et al. Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach. ICCV 2023



Model Collaboration

Instead of selecting a single PTM, aggregating multiple PTMs (with zero-shot ability) to
collaborate in parallel or sequentially can enhance model robustness and accuracy.

Complex target tasks can often be decomposed into multiple sub-tasks, each handled by a different PTM with distinct expertise.

[ Query ] [ Query ]

-----

|

H decode I
101 s g
|

|

API-Level Logit-Level Weight-Level

Text-Level

h\j\ Hj\lﬂ\l i

* Sequential collaboration: small models can tackle easy tasks, while large models can tackle what small models cannot
handle. Furthermore, some tasks can be decomposed into sub-tasks, where different PI'Ms handle each step sequentially.

* Parallel collaboration: multiple PTMSs contribute jointly to task performance through techniques such as weighted

averaging or model mergimng Lihu Chen, Gaél Varoquaux. What is the Role of Small Models in the LLM Era: A Survey. CoRR 2024
Shangbin Feng, et al. When One LLM Drools, Multi-LLM Collaboration Rules. CoRR 2025



Tool Learning

Pre-trained models form individual tools through specific workflows.

o
Prompt B
G R IZ\ Generated

Reference E image
image Model

Text-to-Image

Pretrained Text IEI —_— O — Speech

Models Model Tools

Text-to-Speech

Text IEI E
" G ’ Sorted

image @ Model images
database Cross-Modal Retrieval



€ LLM
_ | Intent
EJ Understanding

Tool Learning

Sizls s Tool Planning

Task Decomposition

\ 4

7] Sub Question1 | [?J Sub Question2 |[? ][ Sub Question3 |

QJ [ Sub Question 1 ]—
7/ SubQuestion2 |- Q

Retriever
[?) SubQuestion3 |-

[ Sub Question 1-N ]—

&
[Tomsv\o X, x} L

Output 1
Output2 —
Output3 —

<ile[= % Tool Selection

[Tools \\ \\ \\b}
Tool Calling

— Parameter

<« Output

Response

: Stage 4 .
Generation
—-[ &) LLM |—> Response !

In the field of tool learning, the
underlying implementation of many
tools is based on deployed general-
purpose models.

Consequently, the boundary between
tools and models is becoming
increasingly blurred.

In the traditional four-stage setting of tool
learning, tool selection and tool calling
can be analogized to model selection and
hyperparameter setting, respectively.



Tool Learning

ToolLLM systematically addresses the issues of insufficient instruction diversity and low
robustness of complex calls by constructing the ToolBench dataset covering 16,000 real APIs.
This has successfully unlocked the significant potential of open-source models to match the
performance of ChatGPT in zero-sample tool invocation scenarios.

4 )

Data Construction & Train &

® - omp-

Instr "Ct“’" 50*'"!'0" Path | API Retriever  Retrieved APIs
Coﬂect:on enerat.'on Annotation "N /
Y i %

[ Instruction ]
Instructlons& relevant APIs ('g:)

Tooanch

I
[}
1
1
]
I
|l

4 [Final Answer]
Q Rapidari E_@ ( ) <—C0<———- Y, -
= =
N RapidAPI API Retriever ToofLLaMA LLaMA @=¥| ToolEval )

The model relies on a static training set, whereas real-world APls are dynamic and prone
to frequent interface changes or deprecations.

Yujia Qin, Shihao Liang, Yining Ye, et al. ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs. ICLR 2024.



Tool Learning

The Alita framework achieves the self-evolution
capability by independently writing code and
encapsulating it using the MCP protocol into new
tools.

OctoTools is a training-free agent framework. It
achieves zero-cost immediate expansion of tools
through standardized "Tool Cards", and with a
"planner-executor” dual-layer architecture and an
automated toolset optimization algorithm.

I
|
|
|
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|
|
|
I
|
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|
1
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@ Query @ | | Action Context . Solution An wer !
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Url Text URL Ca tioner
Ex:m::a;(nr 'j. ? @ Patch Large-scale Manual
Zoomer v "
Engineering

Traditional
i Web E‘
Generalist Agent '!h =

Agents
Path
Generalist If;
Classifier

Alit
Wege nt

This enables the generation and maintenance of an
exclusive subset of tools that can be dynamically
created based on task requirements.

I

Incomplete Coverage
Other

@ Agents 30 [Limited Creativity & Flexibility
.

Mismatch
Youtube
ﬂ":%, Caption

Crawler

The image shows

Q: How many baseballs are there? (2) Planner four blue buckets,

Task-speciﬁc { AC'{IOI"I ] k)} [ Context] each containing

five baseballs.

— Toolset
. Therefore, there
@ @ Optimization l I * are atotal of 20

Minimal Predefinition

o == @y, |, ¥

Maximal Self-Evolution

Manager Agent

baseballs.

HE ¥

(1) Tool cards

Command ﬂl—,\ Command &%
Generator (=] Executor = Enhanced Creativity & Flexibilit

(3) Executor [ OctoTools

Scalable Dynamic Capability ]
Y

Cross-ecosystem Compatibility

[t enhances the performance of LLMs.

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, James Zou. OctoTools: An Agentic Framework with Extensible Tools for Complex Reasoning. CoRR 2025.
Jiahao Qiu, Xuan Qi, Tongcheng Zhang, et al. ALITA: Generalist Agent Enabling Scalable Agentic Reasoning with Minimal Predefinition and Maximal Self-Evolution. CoRR 2025.



Discussions



Coupling of Selection and Adaptation

The generalization ability of an adapted model depends not only on the selected PTM but also on
the adaptation strategy employed. Thus, PTM selection and adaptation are inherently coupled
While some methods, such as transferability estimation, attempt to improve selection, they often fail
to account for the mismatches between fine-tuning and advanced adaptation techniques.

Search both the PTM and corresponding fine-tuning strategies (hyperparameters) with meta-learning.

Hyperparameter Group Hyperparameters Model Name No. of Param.  Top-1 Acc.
beit_large_patch16_512 305.67 90.691
Percentage of the Model to Freeze, Layer Decay, volo_d5_512 296.09 90.610
Finetuning Strategies Linear Probing, Stochastic Norm, SP-Regularization, volo_d5_448 295.91 90.584
o .c . volo_d4_448 193.41 90.507
DELTA Regularization, BSS Regularization, Co-Tuning swinv2_base_window 12t024_192t0384_22kft1k §7.92 90.401
. . - . beit_base_patch16_384 86.74 90.371
o . MixUp, MixUp Probability*, CutMix, Drop-Out, ;
Regularization Techniques . : o volo_d3._448 86.63 Qo168
Label Smoothing, Gradient Clipping tf_efficientnet_b7_ns 66.35 90.093
convnext_small_384_in22ft1k 50.22 89.803
Data Augmentation Type (Trivial Augment, tf_Efﬁcllen(;flleg_;f_nS ‘2‘2»% gg»ggg
. . volo_d1_. . .
Data Augmentation Random Augment, Auto-Augment), Auto-Augment Policy*, xcit_small 12 p8_384 dist 2621 20,515
Number of operations*®, Magnitude* deit3_small_patch16_384_in21ft1k 22.21 89.367
— tf_efficientnet_b4_ns 19.34 89.303
Optimizer type (SGD, SGD+Momentum, xcit_tiny_2421_p§_g§i_gist 162~11 22788
o s . ok % . xcit_tiny_12_p8_384_dist 71 101
Optimization Adam, AdamW,- Adamp), Bqta s*, Momentum . Learning Rate, edgenext. small 550 87504
Warm-up Learning Rate, Weight Decay, Batch Size xcit_nano_12_p8_384_dist 3.05 85.025
mobilevitv2_075 2.87 82.806
. . Scheduler Type (Cosine, Step, Multi-Step, Plateau), Patience*, edgenext_x_small 2.34 81.897
Learning Rate Scheduling P b P mobilevit_xs 232 81.574

Decay Rate*, Decay Epochs™

edgenext_xx_small 1.33 78.698
Model 24 Models on the Pareto front (see Appendix mo(ﬁgjg;:—zxs }:g; ;g:ggg

Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, Frank Hutter, Josif Grabocka. Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How. ICLR 2024.



The Necessity of the Adaptation Stage

Most adaptation techniques are task-specific and require extensive hyper-parameter tuning, making
them difficult to generalize. Lacking a universal adaptation method slows down the development.
Most modern PTMs have the zero-shot ability which generalizes to new tasks without additional
training. This property decouples the selection and adaptation stages, but may also weaken the

ability of the selected PTMs.

There is heterogeneity between tasks (models) There is heterogeneity between tasks (models)
T h > — = = . =
S o -3 O B
T Model e T Direct
Adaptation 2 Generalization ~2
w/ an explicit adaptation phase w/ zero-shot generalization ability

What is the right way to adapt a selected (foundation) PTM and further boost its ability?
Such as in-context-learning, model reprogramming, etc.



Diversity and Strength of the Model Zoo

The success of model reuse depends on the quality, diversity, and generalization of PTMs in the
model zoo. A well-curated collection improves the chance of selecting suitable models—even at
fine-grained levels such as instances or tokens. Therefore, improving the curation and
management of model zoos is essential for maximizing the impact and utility of model reuse.

' Image-Text Multimodal PTM ! Language Generation PTM . !Time Series Forecasting PTM,
-
| g | guag | g
I | i |
(1) Contrastive pre-trainin reate dataset classifier from label tex <t tokel y
I training (2) Create dataset classifier from label text I I Distrbuton 4 L\
ker 3
1 . H I 1 I like the cat on a red[matlecos I | s T |
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I ’E"T;““”—Tll | L e e 1 : \ogé,éééééé& » 1 T E—
I _ B | ‘ I 1 ooooOoOOOoOOo ! 1 ‘ : ° :
convolutior
1 [ 7 T - I 1 R gooceooogae 1 | i ; 3 |
I o [ ‘ i - e ) | necdtopeentinomation I | e s I
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1 VOC2007 Pets DMLab 1 — AquilaChat2-7b-hf 1
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Whether reusing model zoo treats the diversity of PTM as a prerequisite?



Manage A Huge Model Zoo

The challenge: select the right PTM given a huge model zoo (like HuggingFace).

 How to manage the PTMs in the model zoo to facilitate the selection and adaptation.
 How to link different components of PTMs in a model zoo?

Tree of PTMs
Graph of PTMs
Island of PTMs

;: ¥ Pyt Xy Vi
| X — W <. W.r.t. obj; "\

[ wrtoobj, #

I Xm—=dm
w.r.t. objyp |
P /W

e

Specification Space IV
Py &y = Vv wert. objpy

Ameya Prabhu et al., Efficient Lifelong Model Evaluation in an Era of Rapid Progress. NeurIPS 2024.



Model Representation Learning

Model Representation Learning vectorizes PTMs to encode their characteristics, forming hyper-
representations that allow model selection without direct access to the original model parameters.

Learned representations serve multiple purposes:
they act as model specifications within a model zoo,
assist in efficient retrieval, and serve as auxiliary
modalities during adaptation [Zhou et al., CoRR’24].

These representations can be learned based on
intrinsic permutation-invariant properties of a PTM
and can even be decoded back into model weights
[Schurholt et al., NeurlPS’22][Schurholt et al., ICML24].
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Manage A Huge Model Zoo

The dual problem: how to evaluate the ability of a PTM with limited data efficiently?

Sort & Search (S&S) reuses previously evaluated
models by leveraging dynamic programming
algorithms to selectively rank and sub-select test
samples.

Use multi-armed bandits to sequentially identify
the next (method, validation sample)-pair to
evaluate and utilize low-rank matrix factorization
to fill in missing evaluations.
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Conclusion

Effectively taking advantage of PTM resources, = PTM selection requires capturing the
can significantly enhance the sample and time characteristic of PTMs as well as tasks.
efficiency of the machine learning paradigm.
And the key lies in the efficient selection (and
adaptation) of models.

= Select the right PTM based on
semantic/rules, forward-based metrics, or
learned selectors/routers.
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Thank you
Q&A

For more discussions, please contact yehj@nju.edu.cn
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